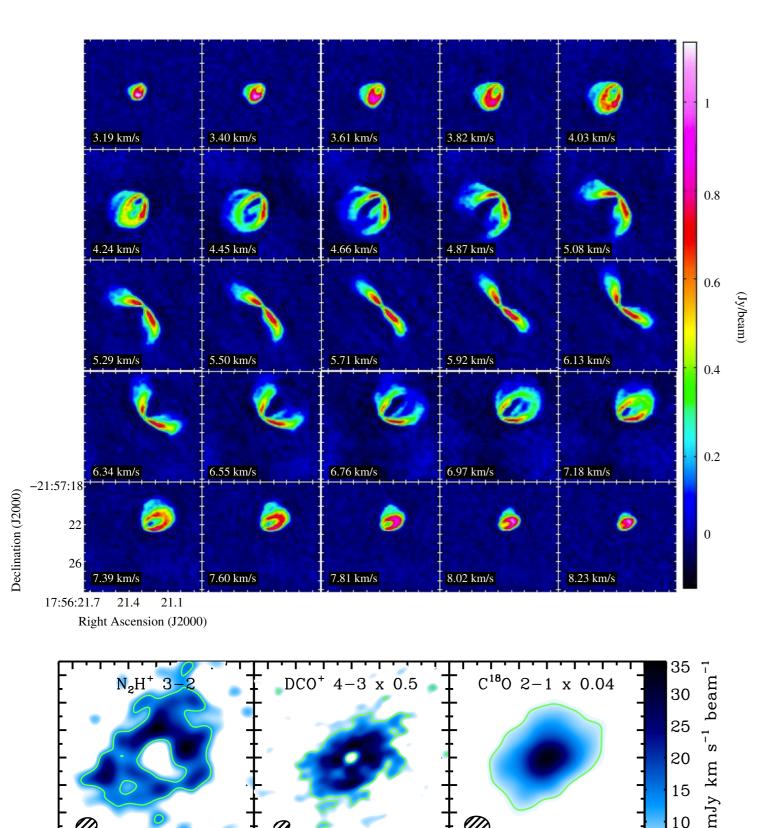
Brief introduction on radiative transfer

Christophe Pinte

Radiative transfer as a diagnostic tool

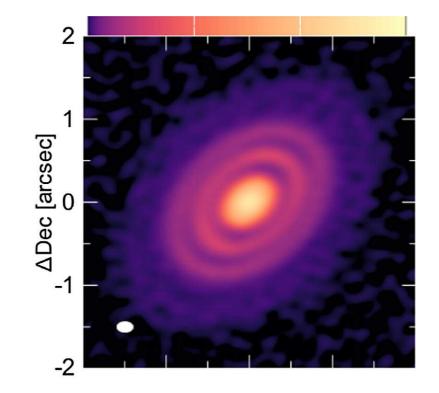


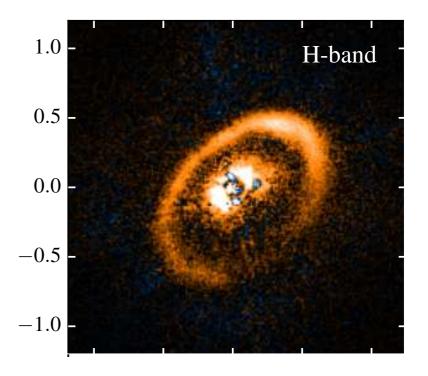
(T)

 \oslash

10

5





Radiative transfer as a physical process

- Heating and cooling and energy transport
 - astrophysical objects cool by emitting radiation
 - inside the object: radiation can transport energy from one place to another

- that same radiation is the radiation we observe with our telescopes

- Drives photo-chemistry
 Energetic photons can:
 - photoionize atoms, molecules
 - photodissociate molecules
 - charge dust grains

Two kind of radiative transfer models

- Post-processing, for comparison to observations:
- Must be very accurate, and frequency dependent
- Must include complex radiative physics (lines, dust, pola)
- Must not necessarily be extremely fast
- In dynamic models:
- Must be fast (RT=bottle neck)
- Must be as parallellizable as hydrodynamics
- High accuracy not feasible so far (not always necessary)
- Using mean opacities, flux lim diffusion, simplex-style

The radiative transfer problem

Radiative Transfer is a 7-dimensional problem (that's *one* of the reasons it is so hard and expensive to solve):

$$I(x, y, z, \theta, \phi, \nu, t)$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

Usually: semi-steady-state:

$$[(x, y, z, \theta, \phi, \nu)]$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

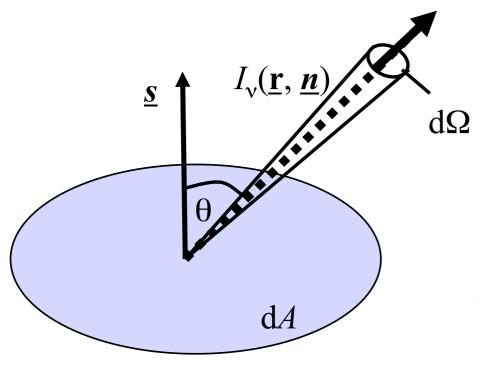
If the emission and extinction coefficients are known, you can reduce this to the Formal Transfer Equation along a single ray:

$$I(s, \nu)$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

Specific intensity & flux

$$\mathrm{d}E_{\lambda} = I_{\lambda}\,\mathrm{d}A\,\mathrm{d}t\,\mathrm{d}\lambda\,\mathrm{d}\Omega$$

Units of I_{λ} : J/m²/s/m/sr (ergs/cm²/s/n/sr) Function of position and direction



s is normal to dA

 $\lambda I_{\lambda} = \nu I_{\nu}$

 $dF_{\lambda} = I_{\lambda} \cos \theta \, d\Omega$ $F_{\lambda} = \int_{\Omega} I_{\lambda} \cos \theta \, d\Omega$

Intensity is constant a long a ray

Key property : energy conservation I_{λ} is independent of distance when no sources or sinks

$$\frac{dI_{\lambda}(s, \overrightarrow{n})}{ds} = 0 \qquad \Longrightarrow \qquad F_{\lambda} \propto \frac{1}{r^2}$$

More generally: I_{ν} changes due to

- Scattering (directional change)
- Doppler-shift (frequency change)
- Absorption
- Emission

Mean intensity

$$J_{\lambda} = \frac{1}{4\pi} \int_{\Omega} I_{\lambda} \,\mathrm{d}\Omega = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} I_{\lambda} \,\sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

Same units as I_{ν} Function of position Determines heating, ionization, level populations, etc



Remark : moment of intensity

$$\begin{split} J_{\lambda} &= \frac{1}{4\pi} \int_{\Omega} I_{\lambda}(\overrightarrow{n}) \, \mathrm{d}\Omega & \text{Mean intensity} \\ \overrightarrow{H_{\lambda}} &= \frac{1}{4\pi} \int_{\Omega} I_{\lambda}(\overrightarrow{n}) \, \cos\theta \, \overrightarrow{n} \, \mathrm{d}\Omega & \text{Flux} \\ K_{\lambda} &= \frac{1}{4\pi} \int_{\Omega} I_{\lambda}(\overrightarrow{n}) \, \cos^{2}\theta \, \mathrm{d}\Omega & \text{Radiation}_{\text{pressure}} \end{split}$$

For homogenous and isotropic radiation $K_{\lambda} = \frac{1}{3} J_{\lambda}$

Extinction

Energy removed from beam Defined per particule, per mass, per volume

$$I_{v} \xrightarrow{0} dA$$

$$ds$$

$$dI_{\lambda}(s, \overrightarrow{n}) = -n(s) \,\sigma_{\lambda}(s) \,I_{\lambda}(s, \overrightarrow{n}) \,ds$$

 σ_{λ} = cross section [m²] n = particule density [m³]

$$\mathrm{d}I_{\lambda}(s,\overrightarrow{n}) = -\alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n}) \,\mathrm{d}s \qquad \qquad \mathbf{X}_{\lambda}: \text{ units of } \mathrm{m}^{-2}$$

$$\mathrm{d}I_{\lambda}(s,\overrightarrow{n}) = -\rho(s)\,\kappa_{\lambda}(s)\,I_{\lambda}(s,\overrightarrow{n})\,\mathrm{d}s \quad \mathbf{K}_{\lambda}(s,\overrightarrow{n})\,\mathrm{d}s \quad \mathbf{K}_{\lambda}(s,\overrightarrow$$

 K_{λ} : units of m².kg ρ = density [kg.m⁻³]

remark : stimulated emission if $\alpha_\lambda < 0$

Extinction

Opacity and optical depth : $au_{\lambda}(s_0, s_1) = \int_{s_0}^{s_1} \alpha_{\lambda}(s) \, \mathrm{d}s$

Optically thick and thin medium :

 $\tau_{\lambda} \gg 1$ and $\tau_{\lambda} \ll 1$

Mean free path :

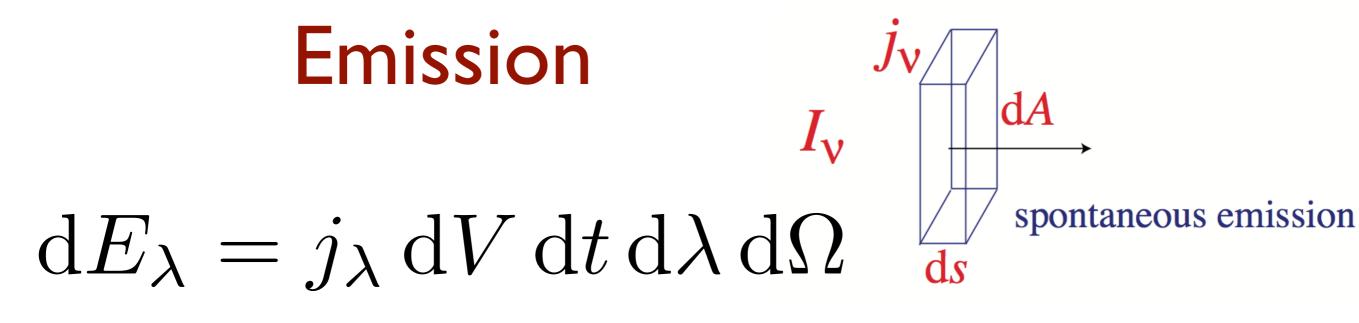
$$l_{\lambda} = \frac{1}{\alpha_{\lambda}(s)}$$

Physically, T is the number of photon mean free paths

Radiative transfer equation with absorption

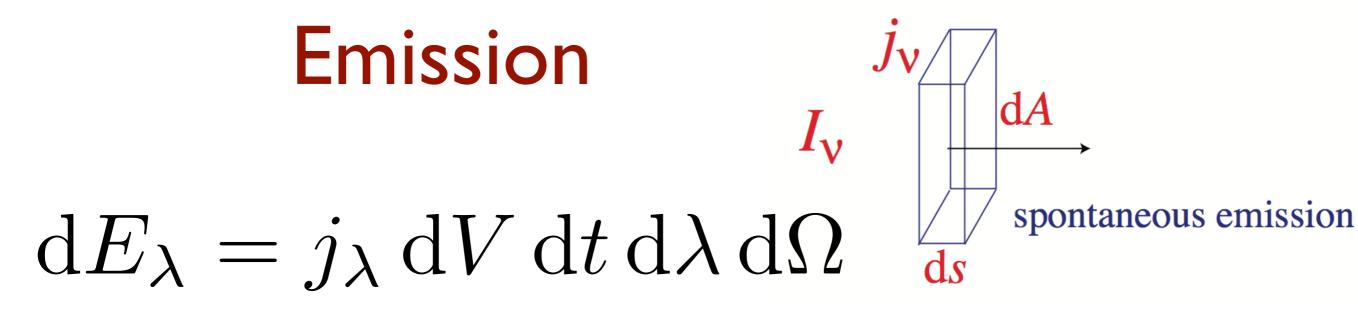
$$\frac{dI_{\lambda}(s,\overrightarrow{n})}{ds} = -\alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n})$$

$$I_{\lambda}(s, \overrightarrow{n}) = I_{\lambda}(s_0, \overrightarrow{n}) e^{-\tau_{\lambda}(s_0, s)}$$



Energy, dE_{λ} , added:

- stimulated emission
- spontaneous emission
- thermal emission
- energy scattered into the beam



Energy, dE_{λ} , added:

- stimulated emission
- spontaneous emission
- thermal emission
- energy scattered into the beam

$$\frac{dI_{\lambda}(s,\overrightarrow{n})}{ds} = j_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n})$$

Energy, dE_{λ} , added:

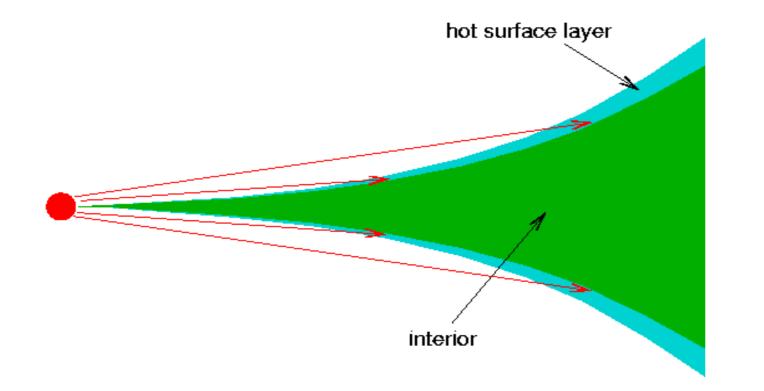
- stimulated emission
- spontaneous emission
- thermal emission
- energy scattered into the beam

$$\frac{dI_{\lambda}(s,\overrightarrow{n})}{ds} = j_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n})$$

$$I_{\lambda}(s, \overrightarrow{n}) = I_{\lambda}(s_0, \overrightarrow{n}) e^{-\tau_{\lambda}(s_0, s)} + \int_{s_0}^{s} j_{\lambda}(s') e^{-\tau(s_0, s')} ds$$

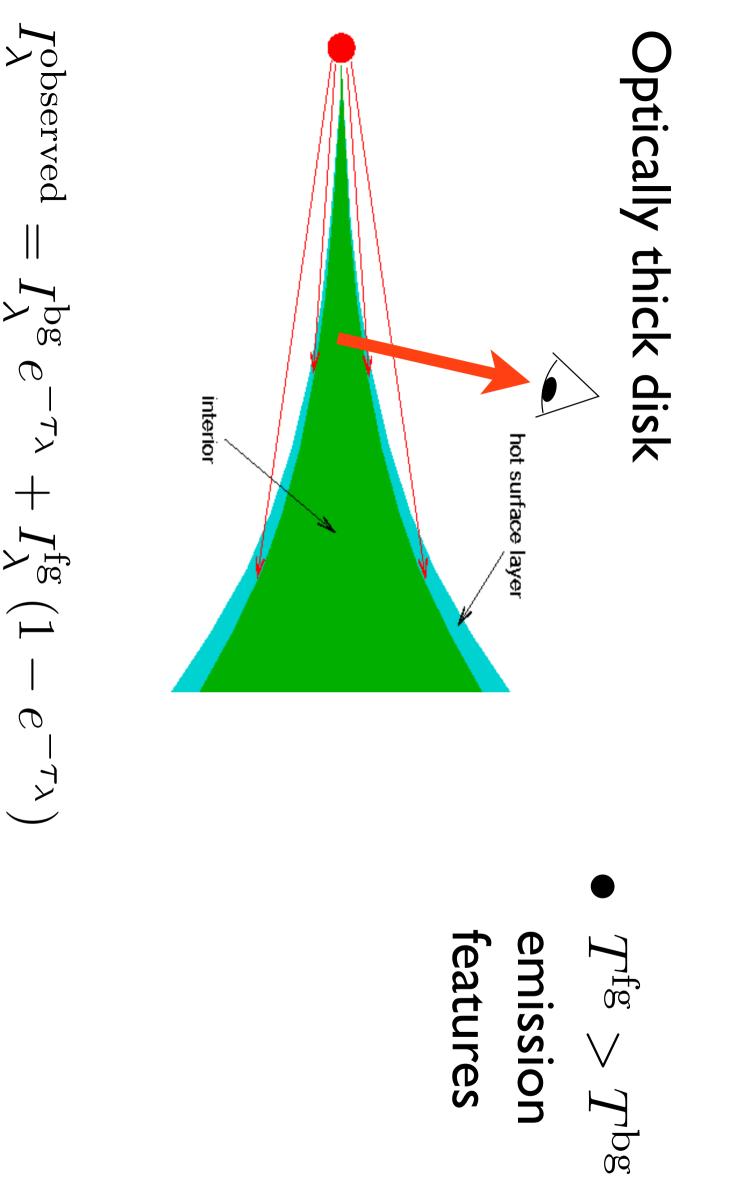
Spectroscopic features

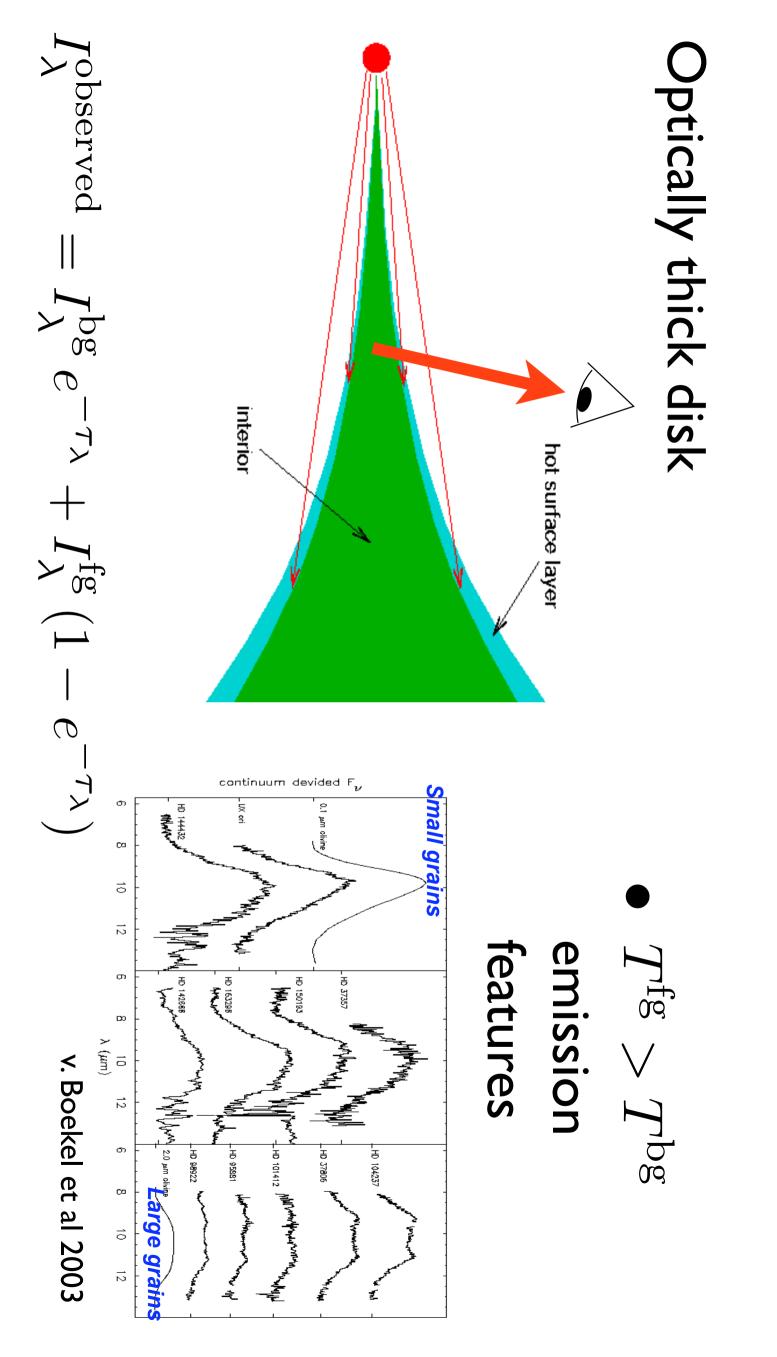
Optically thick disk



$$I_{\lambda}^{\text{observed}} = I_{\lambda}^{\text{bg}} e^{-\tau_{\lambda}} + I_{\lambda}^{\text{fg}} \left(1 - e^{-\tau_{\lambda}}\right)$$

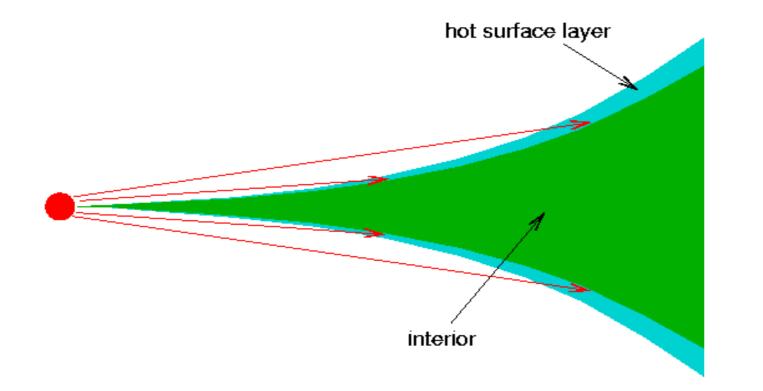
Spectroscopic features





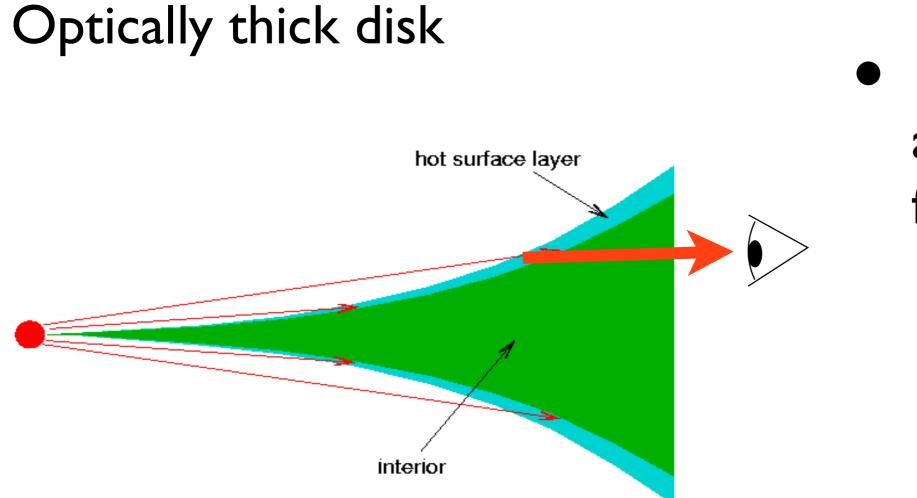
Spectrosocopic features

Optically thick disk



$$I_{\lambda}^{\text{observed}} = I_{\lambda}^{\text{bg}} e^{-\tau_{\lambda}} + I_{\lambda}^{\text{fg}} \left(1 - e^{-\tau_{\lambda}}\right)$$

Spectrosocopic features

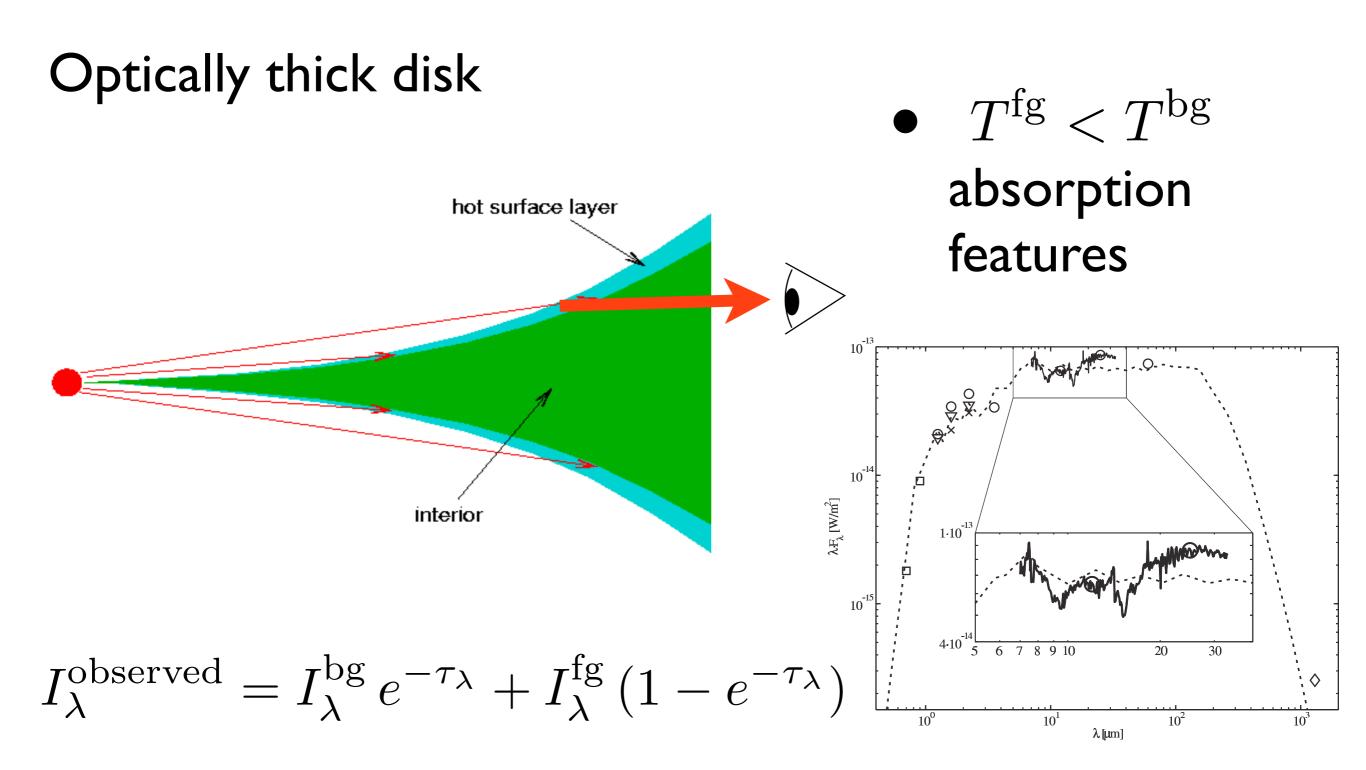


$$T^{\mathrm{fg}} < T^{\mathrm{bg}}$$

absorption
features

$$I_{\lambda}^{\text{observed}} = I_{\lambda}^{\text{bg}} e^{-\tau_{\lambda}} + I_{\lambda}^{\text{fg}} \left(1 - e^{-\tau_{\lambda}}\right)$$

Spectrosocopic features



Kirchoff's law

Suppose we have a medium at equilibrium at a temperature T :

$$\frac{\mathrm{d}I_{\lambda}(s,\overrightarrow{n})}{\mathrm{d}s} = 0 \quad \text{and} \quad I_{\lambda} = B_{\lambda}(T)$$

 $j_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s, \overrightarrow{n}) = j_{\lambda}(s) - \alpha_{\lambda}(s) B_{\lambda}(T) = 0$

Kirchoff's law

Suppose we have a medium at equilibrium at a temperature T :

$$\frac{\mathrm{d}I_{\lambda}(s,\overrightarrow{n})}{\mathrm{d}s} = 0 \quad \text{and} \quad I_{\lambda} = B_{\lambda}(T)$$

$$j_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s, \overrightarrow{n}) = j_{\lambda}(s) - \alpha_{\lambda}(s) B_{\lambda}(T) = 0$$

At radiative equilibrium, a good absorber is a good emitter, and a poor absorber is a poor emitter

$$j_{\lambda} = \alpha_{\lambda} B_{\lambda}(T)$$

Source function

In the general case, we define

$$S_{\lambda} \equiv \frac{j_{\lambda}}{\alpha_{\lambda}}$$

Source function

In the general case, we define

$$S_{\lambda} \equiv \frac{j_{\lambda}}{\alpha_{\lambda}}$$

The RT equation can be written:

$$\frac{dI_{\lambda}(s,\overrightarrow{n})}{ds} = \alpha_{\lambda}(s) S_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n})$$

or:

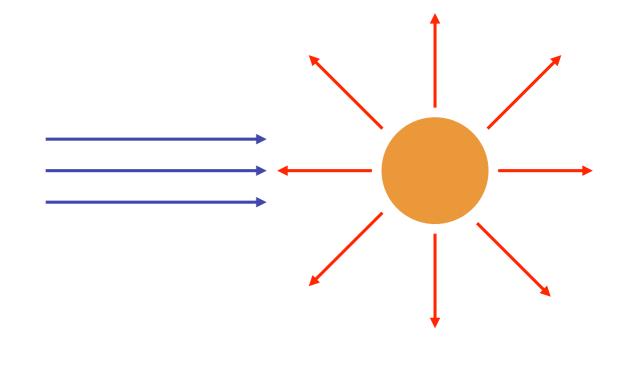
$$\frac{dI_{\lambda}(s,\overrightarrow{n})}{d\tau} = S_{\lambda}(s) - I_{\lambda}(s,\overrightarrow{n})$$

Temperature of a dust grain

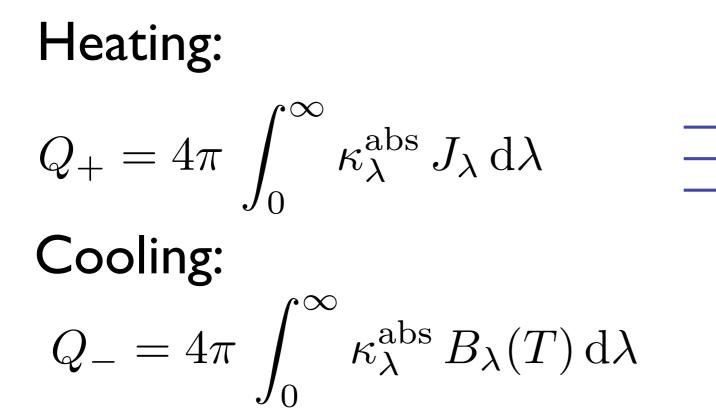
$$Q_{+} = 4\pi \int_{0}^{\infty} \kappa_{\lambda}^{\text{abs}} J_{\lambda} \, \mathrm{d}\lambda$$

Cooling:

$$Q_{-} = 4\pi \int_{0}^{\infty} \kappa_{\lambda}^{\text{abs}} B_{\lambda}(T) \,\mathrm{d}\lambda$$



Temperature of a dust grain



Thermal balance:

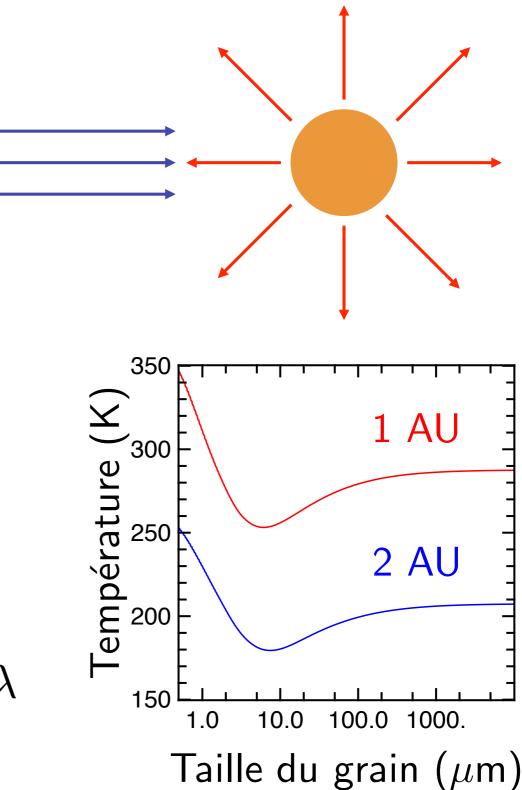
$$\int_0^\infty \kappa_\lambda^{\rm abs} B_\lambda(T) \,\mathrm{d}\lambda = \int_0^\infty \kappa_\lambda^{\rm abs} J_\lambda \,\mathrm{d}\lambda$$

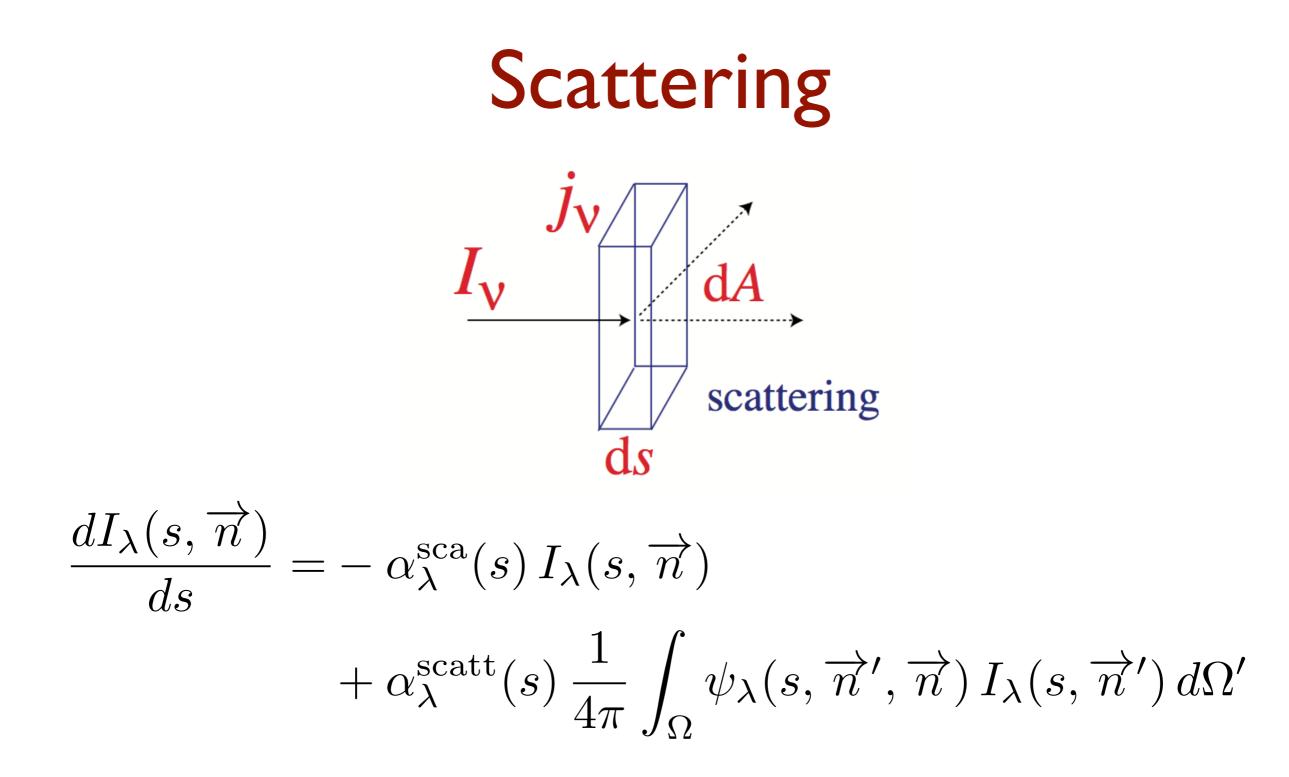
Temperature of a dust grain

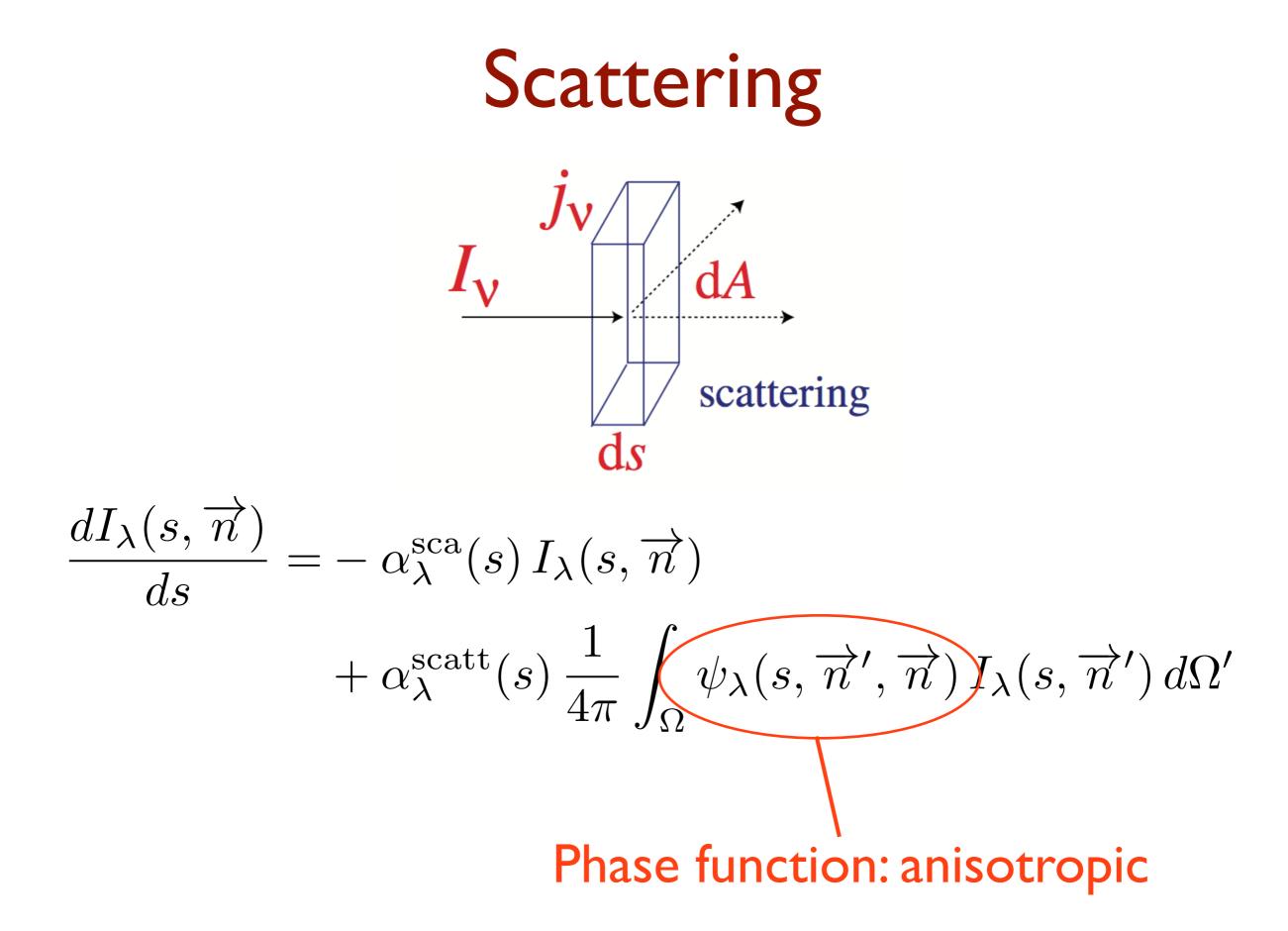
Heating: $Q_{+} = 4\pi \int_{0}^{\infty} \kappa_{\lambda}^{\text{abs}} J_{\lambda} \, d\lambda$ Cooling: $Q_{-} = 4\pi \int_{0}^{\infty} \kappa_{\lambda}^{\text{abs}} B_{\lambda}(T) \, d\lambda$

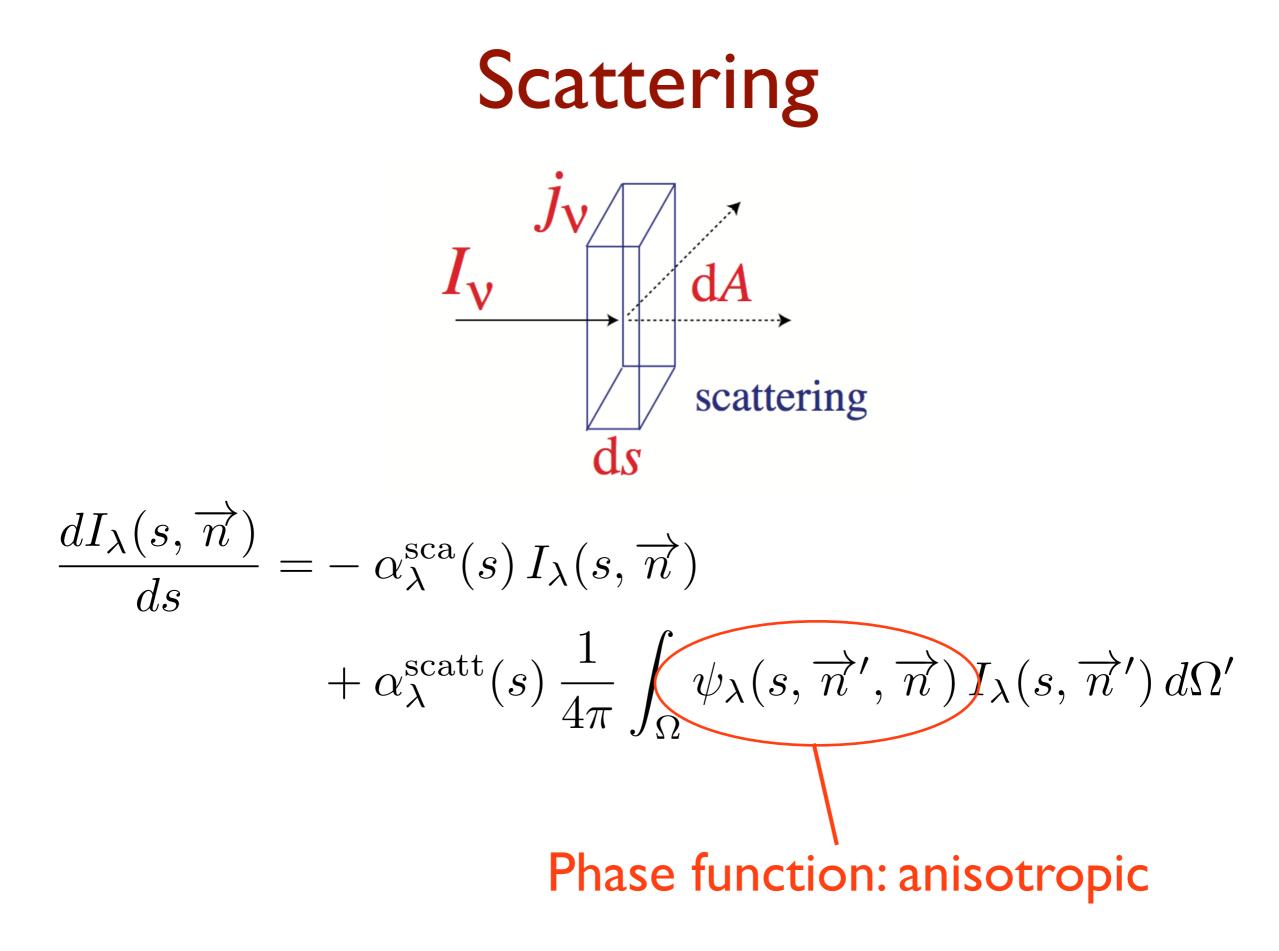
Thermal balance:

$$\int_0^\infty \kappa_\lambda^{\rm abs} B_\lambda(T) \,\mathrm{d}\lambda = \int_0^\infty \kappa_\lambda^{\rm abs} J_\lambda \,\mathrm{d}\lambda$$







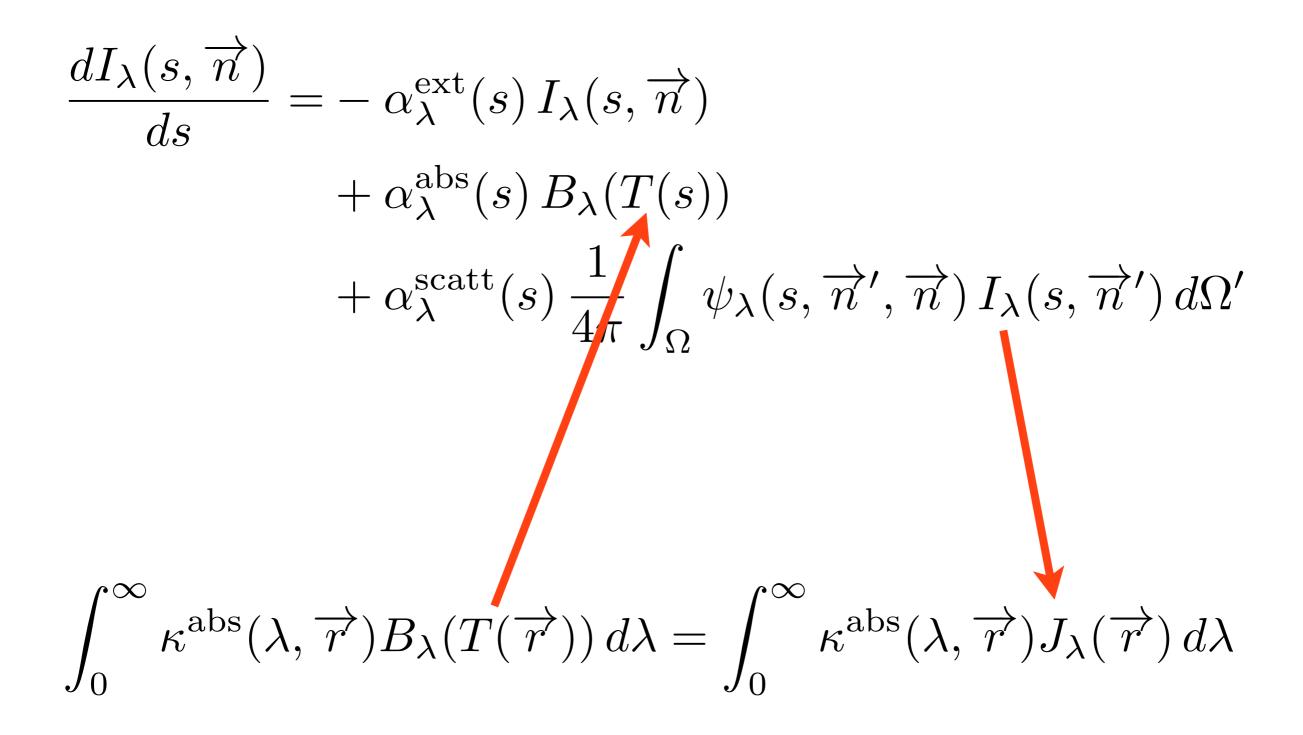


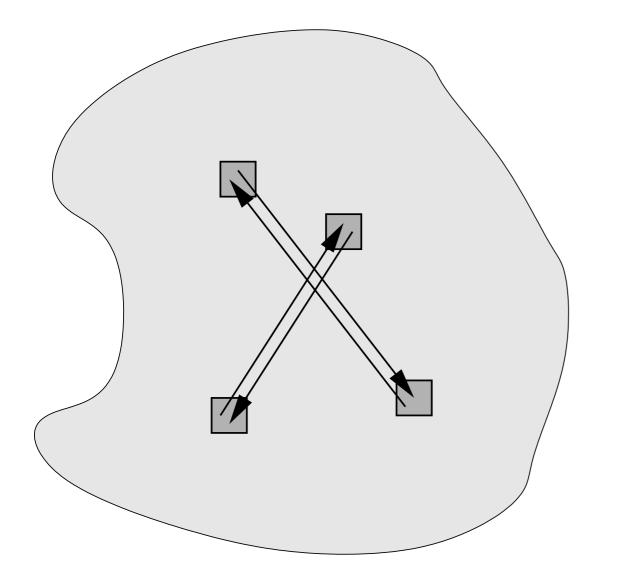
RT equation is now integro-differential

$$\frac{dI_{\lambda}(s, \overrightarrow{n})}{ds} = -\alpha_{\lambda}^{\text{ext}}(s) I_{\lambda}(s, \overrightarrow{n})
+ \alpha_{\lambda}^{\text{abs}}(s) B_{\lambda}(T(s))
+ \alpha_{\lambda}^{\text{scatt}}(s) \frac{1}{4\pi} \int_{\Omega} \psi_{\lambda}(s, \overrightarrow{n}', \overrightarrow{n}) I_{\lambda}(s, \overrightarrow{n}') d\Omega'$$

$$\int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) B_\lambda(T(\overrightarrow{r})) \, d\lambda = \int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) J_\lambda(\overrightarrow{r}) \, d\lambda$$

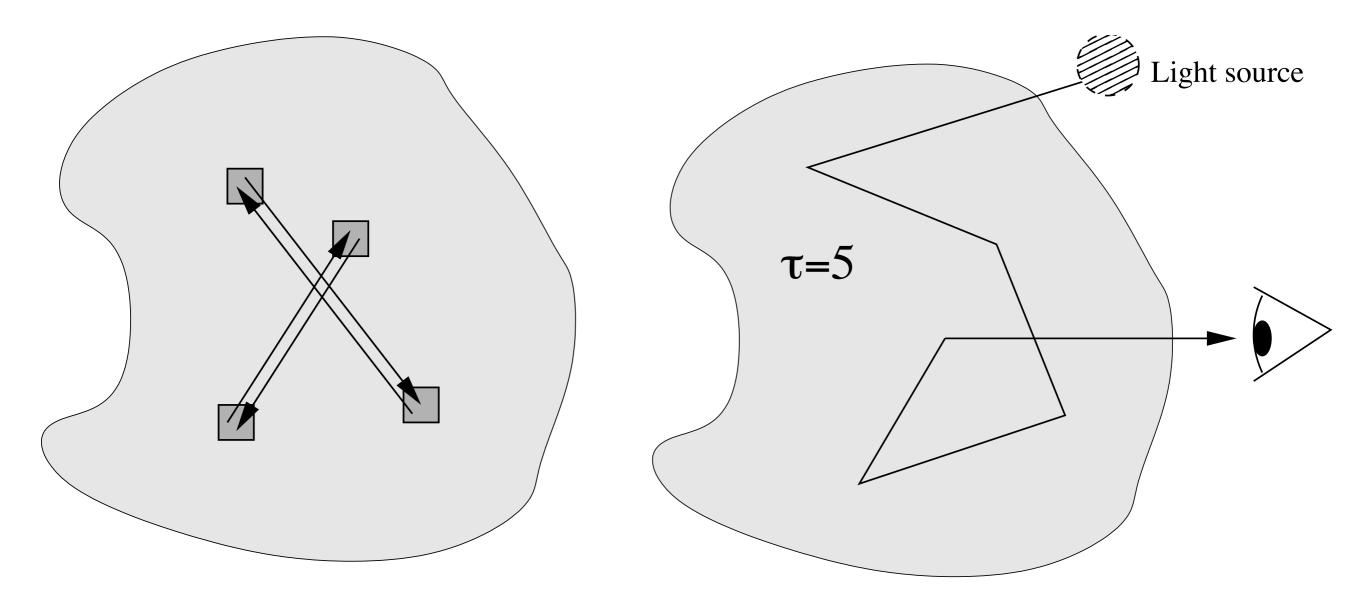
$$\begin{aligned} \frac{dI_{\lambda}(s,\overrightarrow{n})}{ds} &= -\alpha_{\lambda}^{\text{ext}}(s) I_{\lambda}(s,\overrightarrow{n}) \\ &+ \alpha_{\lambda}^{\text{abs}}(s) B_{\lambda}(T(s)) \\ &+ \alpha_{\lambda}^{\text{scatt}}(s) \frac{1}{4\tau} \int_{\Omega} \psi_{\lambda}(s,\overrightarrow{n}',\overrightarrow{n}) I_{\lambda}(s,\overrightarrow{n}') d\Omega' \\ \int_{0}^{\infty} \kappa^{\text{abs}}(\lambda,\overrightarrow{r}) B_{\lambda}(T(\overrightarrow{r})) d\lambda &= \int_{0}^{\infty} \kappa^{\text{abs}}(\lambda,\overrightarrow{r}) J_{\lambda}(\overrightarrow{r}) d\lambda \end{aligned}$$





© K. Dullemond

Dust RT equations



© K. Dullemond

Remark I: time dependance

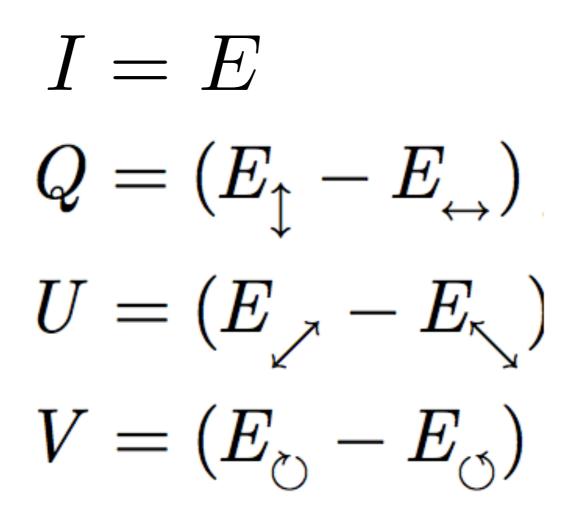
$$\frac{1}{c}\frac{\partial I_{\lambda}(s,\overrightarrow{n},t)}{\partial t} + \frac{\partial I_{\lambda}(s,\overrightarrow{n},t)}{\partial s} = j_{\lambda}(s) - \alpha_{\lambda}(s) I_{\lambda}(s,\overrightarrow{n},t)$$

We will assume that light propagation is much faster than the timescale at which the object changes

Not always true !

See for instance Harris et al, 2011

Polarization state of the light can be described by the Stokes parameters



$$\frac{d\mathbf{S}_{\lambda}(s,\overrightarrow{n})}{ds} = -\alpha_{\lambda}^{\text{ext}}(s) \, \mathbf{S}_{\lambda}(s,\overrightarrow{n})
+ \alpha_{\lambda}^{\text{abs}}(s) \, B_{\lambda}(T(s))
+ \alpha_{\lambda}^{\text{scatt}}(s) \, \frac{1}{4\pi} \int_{\Omega} \mathcal{M}_{\lambda}(s,\overrightarrow{n}',\overrightarrow{n}) \, \mathbf{S}_{\lambda}(s,\overrightarrow{n}') \, d\Omega'$$

$$\begin{aligned} \frac{d\mathbf{S}_{\lambda}(s,\overrightarrow{n})}{ds} &= -\alpha_{\lambda}^{\text{ext}}(s)\,\mathbf{S}_{\lambda}(s,\overrightarrow{n}) & \text{dichroic extinction} \\ &+ \alpha_{\lambda}^{\text{abs}}(s)\,B_{\lambda}(T(s)) \\ &+ \alpha_{\lambda}^{\text{scatt}}(s)\,\frac{1}{4\pi}\int_{\Omega}\mathcal{M}_{\lambda}(s,\overrightarrow{n}',\overrightarrow{n})\,\mathbf{S}_{\lambda}(s,\overrightarrow{n}')\,d\Omega' \end{aligned}$$

$$\frac{d\mathbf{S}_{\lambda}(s,\vec{n})}{ds} = -\alpha_{\lambda}^{\text{ext}}(s) \, \mathbf{S}_{\lambda}(s,\vec{n}) \quad \text{dichroic extinction} \\
+ \alpha_{\lambda}^{\text{abs}}(s) \, B_{\lambda}(T(s)) \quad \text{polarised emision} \\
+ \alpha_{\lambda}^{\text{scatt}}(s) \, \frac{1}{4\pi} \int_{\Omega} \mathcal{M}_{\lambda}(s,\vec{n}',\vec{n}) \, \mathbf{S}_{\lambda}(s,\vec{n}') \, d\Omega'$$

Polarisation by scattering very sensitive to dust properties

Mueller matrix (randomly oriented particles)



Circular polarisation in case of multiple scattering

$$\begin{pmatrix} I = 1 \\ Q = 0 \\ U = 0 \\ V = 0 \end{pmatrix} \overset{1^{\text{ere}}\text{diff}}{\longrightarrow} \begin{pmatrix} I = 1 \\ Q \neq 0 \\ U = 0 \\ V = 0 \end{pmatrix} \overset{2^{\text{eme}}\text{diff}}{\longrightarrow} \begin{pmatrix} I = 1 \\ Q \neq 0 \\ U \neq 0 \\ V \neq 0 \end{pmatrix}$$

Remark 3: line transfer

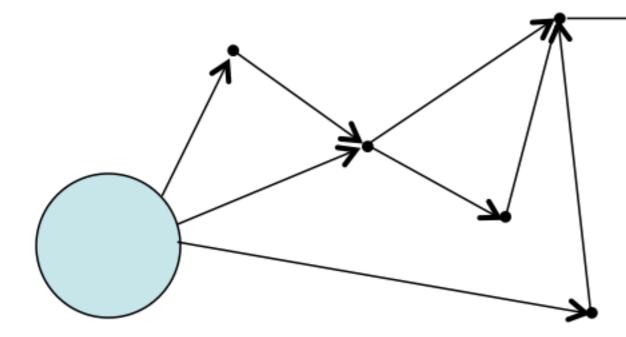
$$\frac{dI_{\nu}}{ds} = j_{\nu}(s) - \alpha_{\nu}(s)I_{\nu}(s)$$

$$j_{ij,\nu} = \frac{h\nu_{ij}}{4\pi} N_i A_{ij} \phi_{ij}(\nu)$$
$$\alpha_{ij,\nu} = \frac{h\nu_{ij}}{4\pi} (N_j B_{ji} - N_i B_{ij}) \phi_{ij}(\nu)$$

Level populations Ni, and then opacities depend on temperature

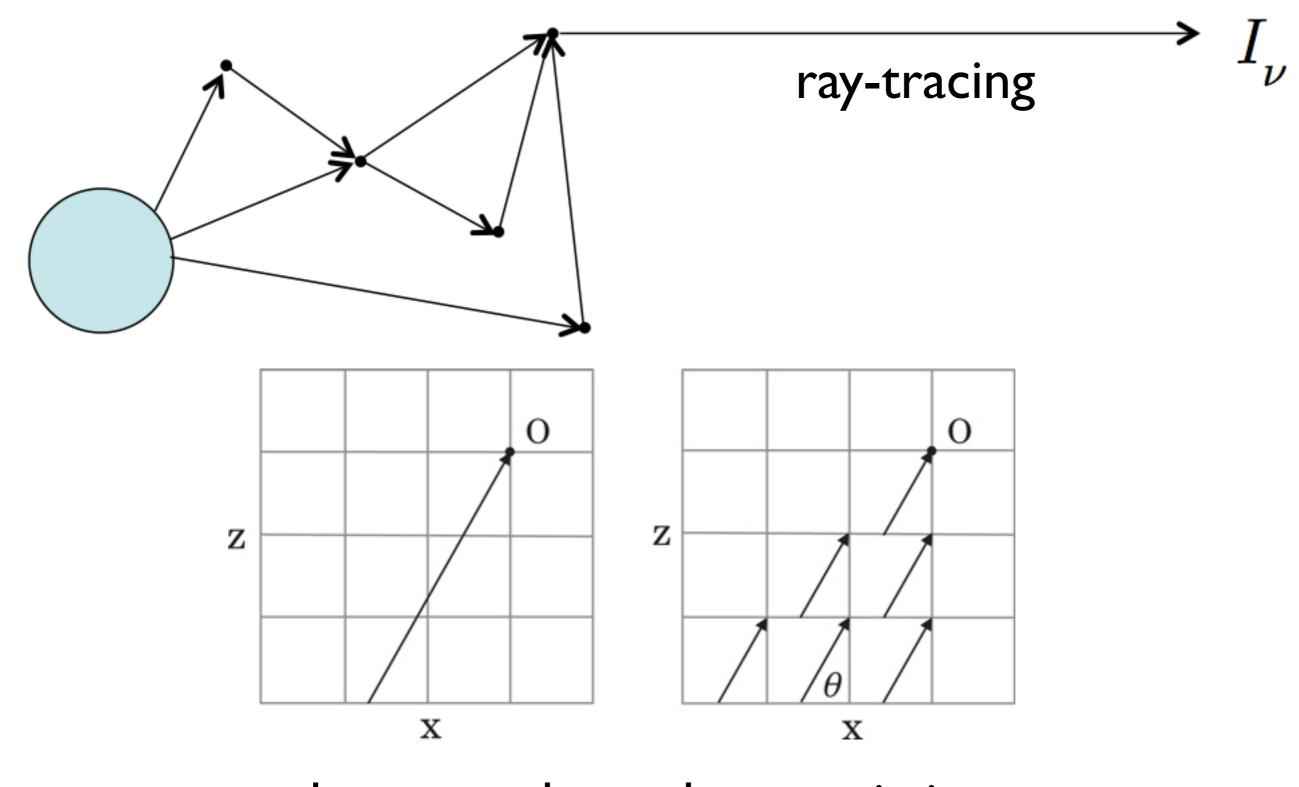
How do we solve the RT equation ?

Discrete-ordinate methods



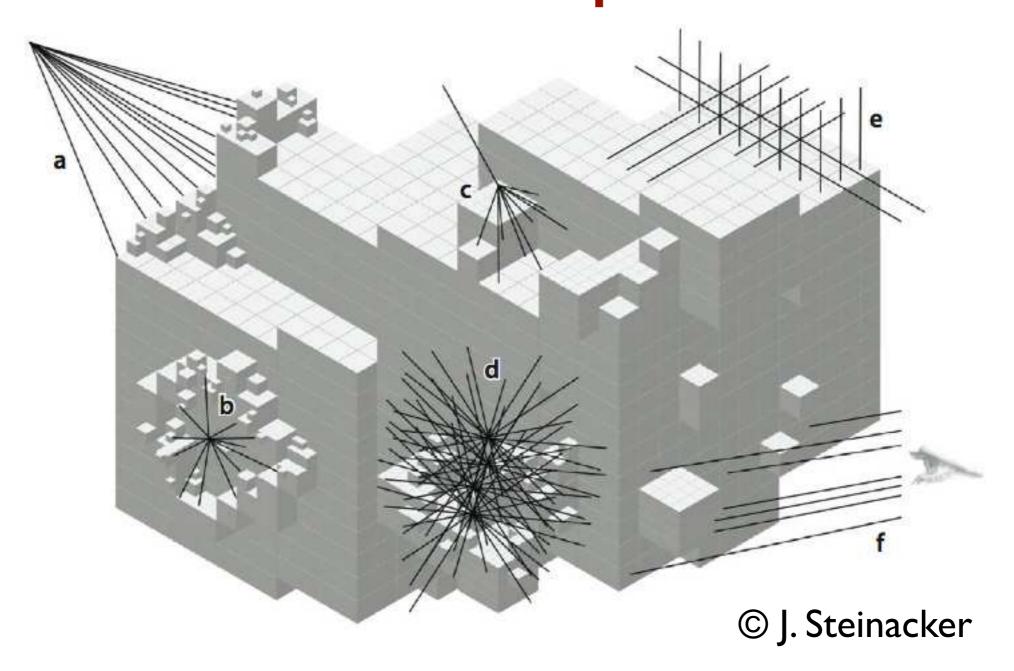
ray-tracing

Discrete-ordinate methods



long or short characteristics

Choice of rays can become VERY complex



To my knowledge: only I ray-tracing code in 3D

- Make an inital guess for $J_{\lambda,}$ compute S_{λ}
- Integrate the formal RT equation along a large number of rays
- Recompute J_{λ}
- Loop until converged

- Make an inital guess for $J_{\lambda,}$ compute S_{λ}
- Integrate the formal RT equation along a large number of rays
- Recompute J_{λ}
- Loop until converged

$$J_{\lambda} = \Lambda[S_{\lambda}]$$

- Make an inital guess for $J_{\lambda,}$ compute S_{λ}
- Integrate the formal RT equation along a large number of rays
- Recompute J_{λ}
- Loop until converged

$$J_{\lambda} = \Lambda[S_{\lambda}]$$

Pb:need
$$N_{\rm iter} \gg \tau^2$$

- Make an inital guess for $J_{\lambda,}$ compute S_{λ}
- Integrate the formal RT equation along a large number of rays
- Recompute J_{λ}
- Loop until converged

$$J_{\lambda} = \Lambda[S_{\lambda}]$$

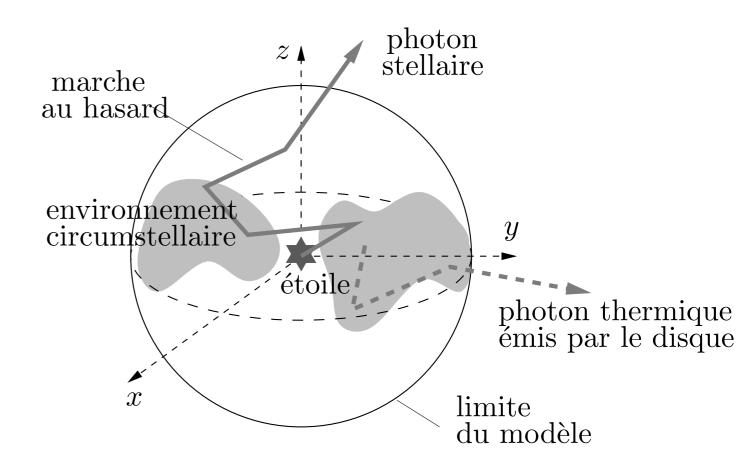
Pb:need $N_{\rm iter} \gg \tau^2$

 $\Rightarrow \textbf{Accelerated - LI}$ $\Lambda = \Lambda^* + (\Lambda - \Lambda^*)$

• Idea :

Propagate many photon packets by randomly sampling from probability distribution functions for directions, wavelengths, path lengths, interactions with dust.

mimics the motion of photons



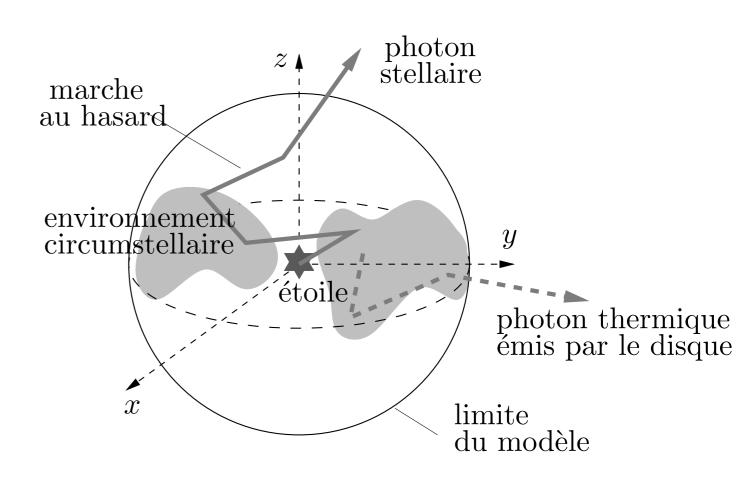
• Idea :

Propagate many photon packets by randomly sampling from probability distribution functions for directions, wavelengths, path lengths, interactions with dust.

mimics the motion of photons

Advantages:

- easy to include physics
- intrisincally 3D
- Fast: variance
 reduction techniques,
 diffusion approx., ray tracing



- Emit a photon packet = luminosity packet
- packet travels some distance
 - packet interacts with dust :
 - scattering : change direction / polarization
- Loop until packet exits
- 10⁶ to 10⁹ times
- absorption : kill the packet

- Emit a photon packet = luminosity packet
- packet travels some distance
 - packet interacts with dust :
 - scattering : change direction / polarization
- Loop until packet
- exits 10⁶ to 10⁹ times absorption : kill the packet
 - Compute Temperature
 - Re-emit absorbed packets according to $\kappa_{\lambda}^{\rm abs}B_{\lambda}(T)$
 - Collect packets when they exit to make observables

Probability of interation

Intensity differential over dl is $dI_{\lambda} = -\alpha I_{\lambda} dl$

Probability of interaction over dl αdl

Probability of interation

Intensity differential over dl is $dI_{\lambda} = -\alpha I_{\lambda} dl$

Probability of interaction over d/ αdl

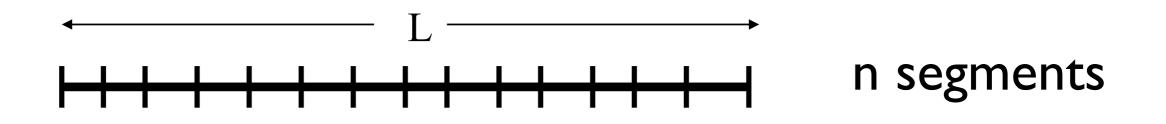
Probability of travelling d/ without interaction $1 - \alpha \, \mathrm{d} l$

Probability of interation

Intensity differential over dl is $dI_{\lambda} = -\alpha I_{\lambda} dl$

Probability of interaction over d/ αdl

Probability of travelling d/ without interaction $1 - \alpha \, \mathrm{d} l$



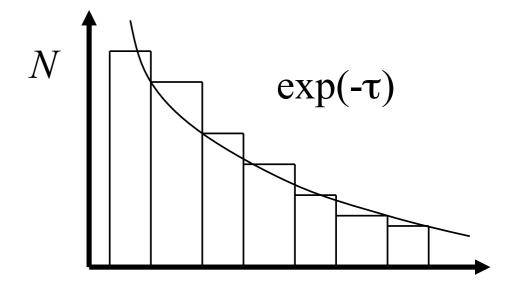
Probability of travelling L without interaction:

$$P(L) = \left(1 - \alpha \frac{L}{n}\right)^n \underset{n \to \infty}{\longrightarrow} \exp(-\alpha L) = \exp(-\tau)$$

Probability distribution function

PDF for photon to travel T is exp(-T)

We want to pick a lot of small T and fewer large T

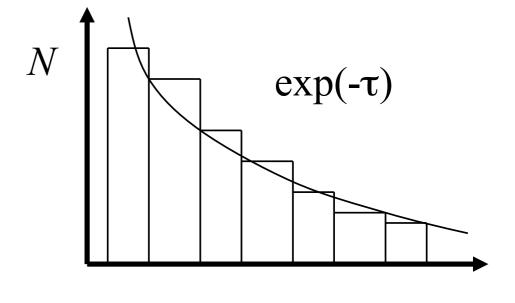


τ

Probability distribution function

PDF for photon to travel T is exp(-T)

We want to pick a lot of small T and fewer large T



τ

Same for all quantities: position, emission angle, scattering angle, wavelength, ...

We want to map any probability distribution to an uniform distribution from 0 to 1

$$CDF = F(x) = \int_{a}^{x} p(x') dx' \qquad \int_{a}^{b} p(x') dx' = 1$$
$$Y = F(X) \quad \text{uniform distribution in [0,1]} \qquad \frac{F(a) = 0}{F(b) = 1}$$

1

We want to map any probability distribution to an uniform distribution from 0 to 1

$$CDF = F(x) = \int_{a}^{x} p(x') dx' \qquad \int_{a}^{b} p(x') dx' = 1$$
$$Y = F(X) \quad \text{uniform distribution in [0,1]} \qquad \begin{array}{c} F(a) = 0\\ F(b) = 1 \end{array}$$

Pick a random number $\mathcal{A}_i = F(x)$ in [0, 1]

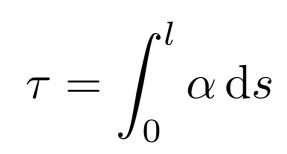
$$x = F^{-1}(\mathcal{A}_i)$$
 is following $p(x)$

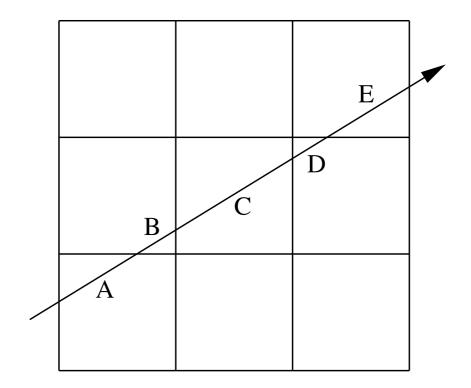
$$\mathcal{A} = \int_0^\tau e^{-\tau'} \, \mathrm{d}\tau' = 1 - e^{-\tau} \quad \Rightarrow \quad \tau = -\log(1 - \mathcal{A})$$

or $\tau = -\log \mathcal{A}$

$$\mathcal{A} = \int_0^\tau e^{-\tau'} \,\mathrm{d}\tau' = 1 - e^{-\tau} \quad \Rightarrow \quad \tau = -\log(1 - \mathcal{A})$$

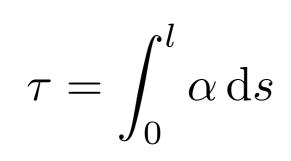
or $\tau = -\log \mathcal{A}$

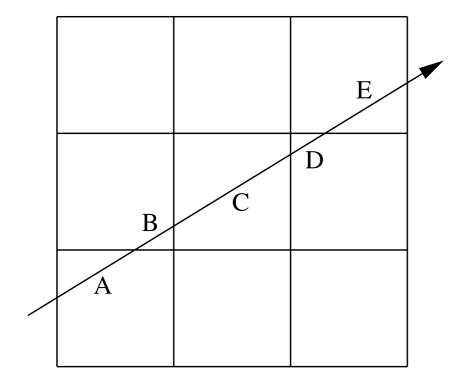




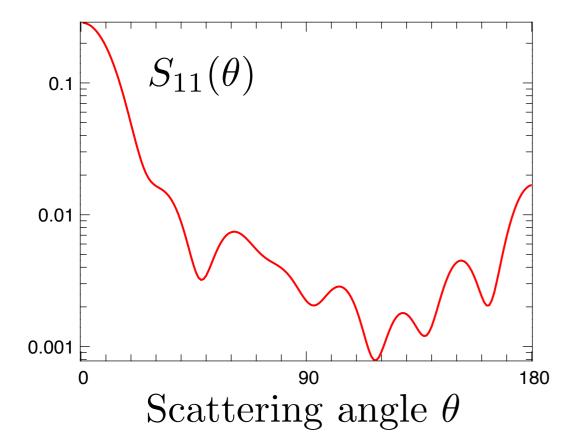
$$\mathcal{A} = \int_0^\tau e^{-\tau'} \,\mathrm{d}\tau' = 1 - e^{-\tau} \quad \Rightarrow \quad \tau = -\log(1 - \mathcal{A})$$

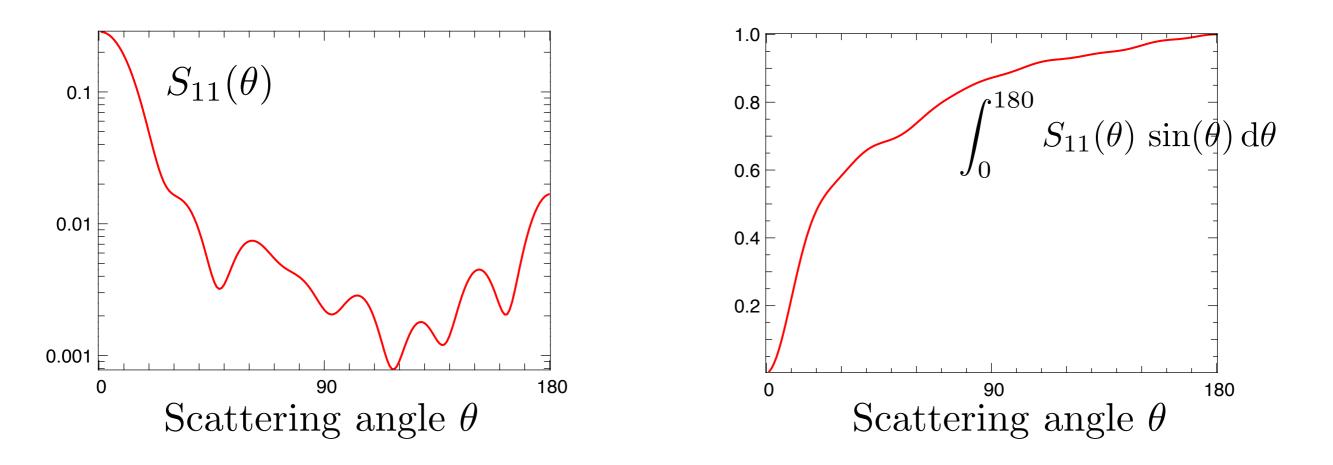
or $\tau = -\log \mathcal{A}$

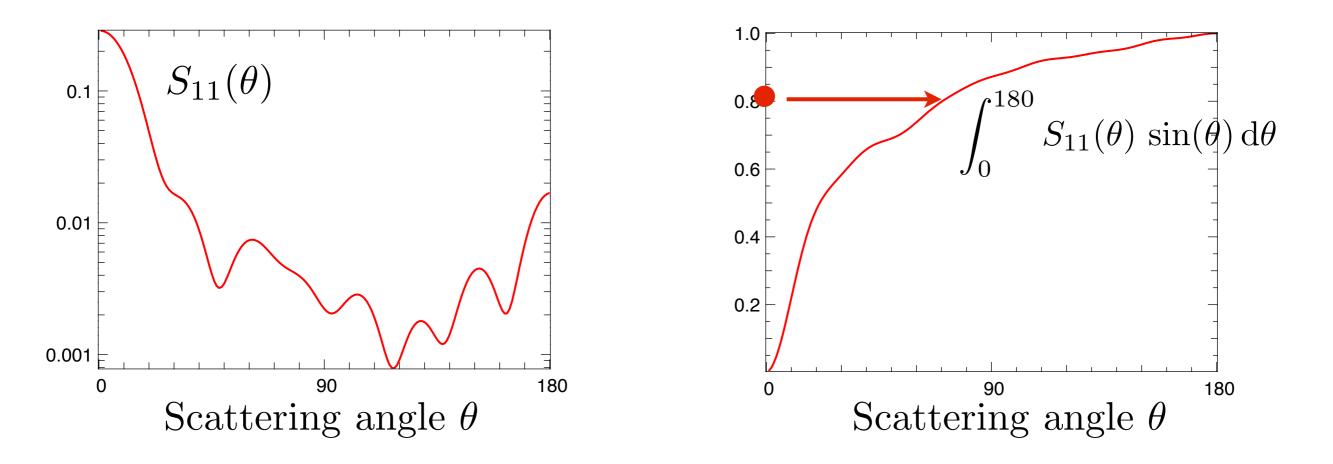


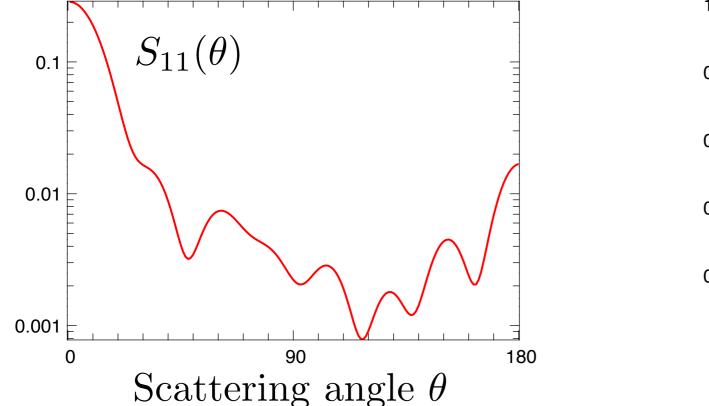


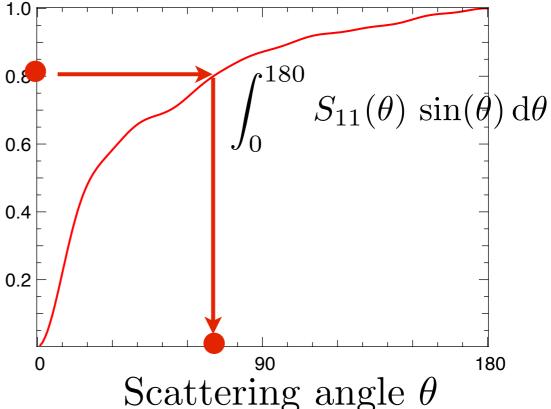
This is the most expensive part !

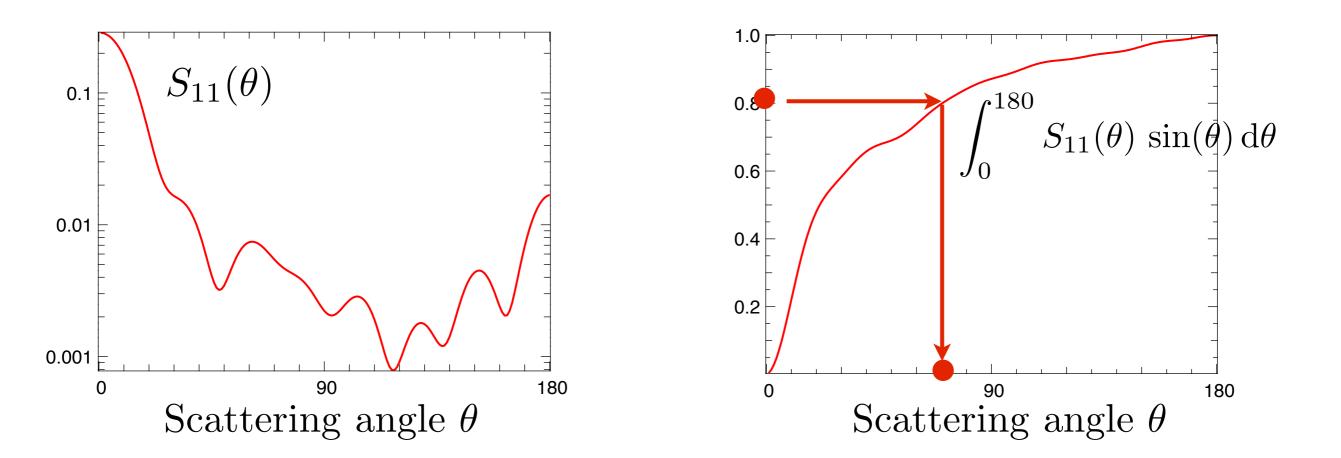












This is not a realistic phase function

We can sample any PDF

Problem solved ?

Yes and No

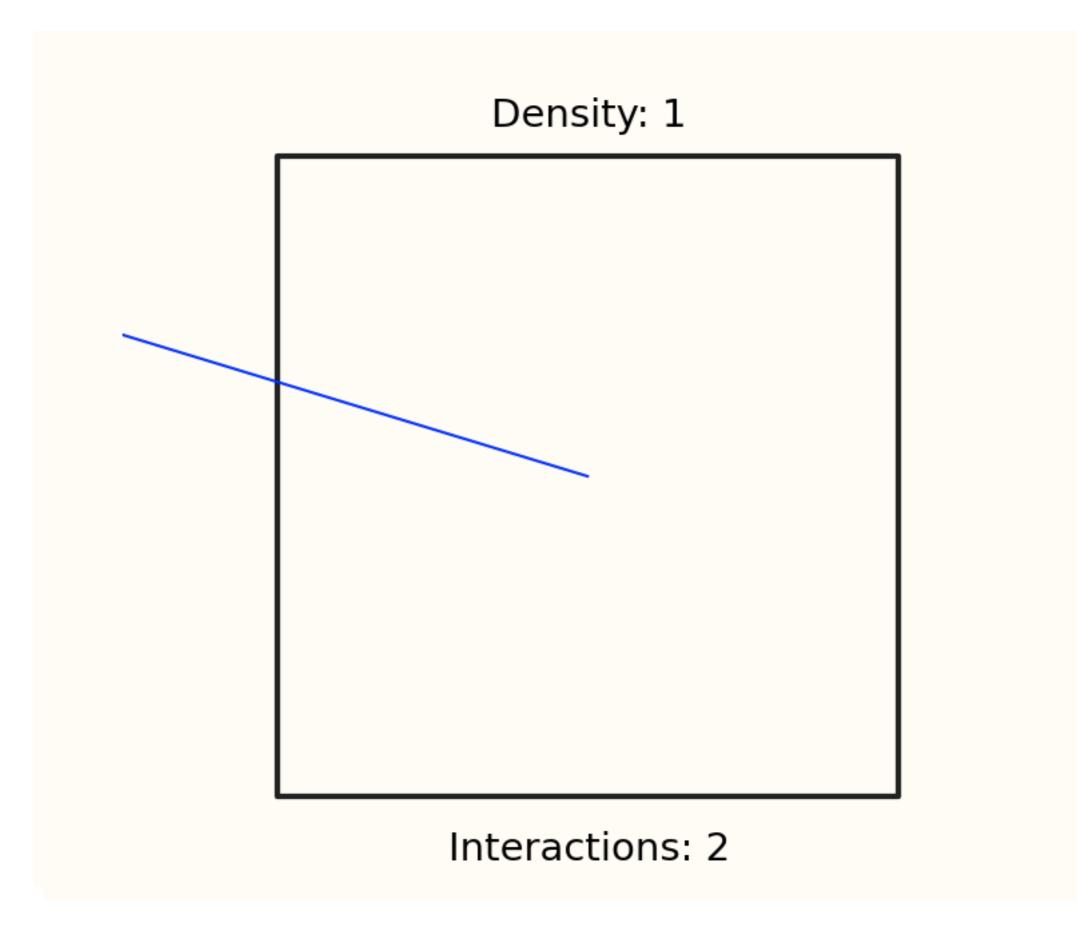
Monte-Carlo RT will eventually give the right result, but for most real-life cases it will often be inefficient in its basic implementation.

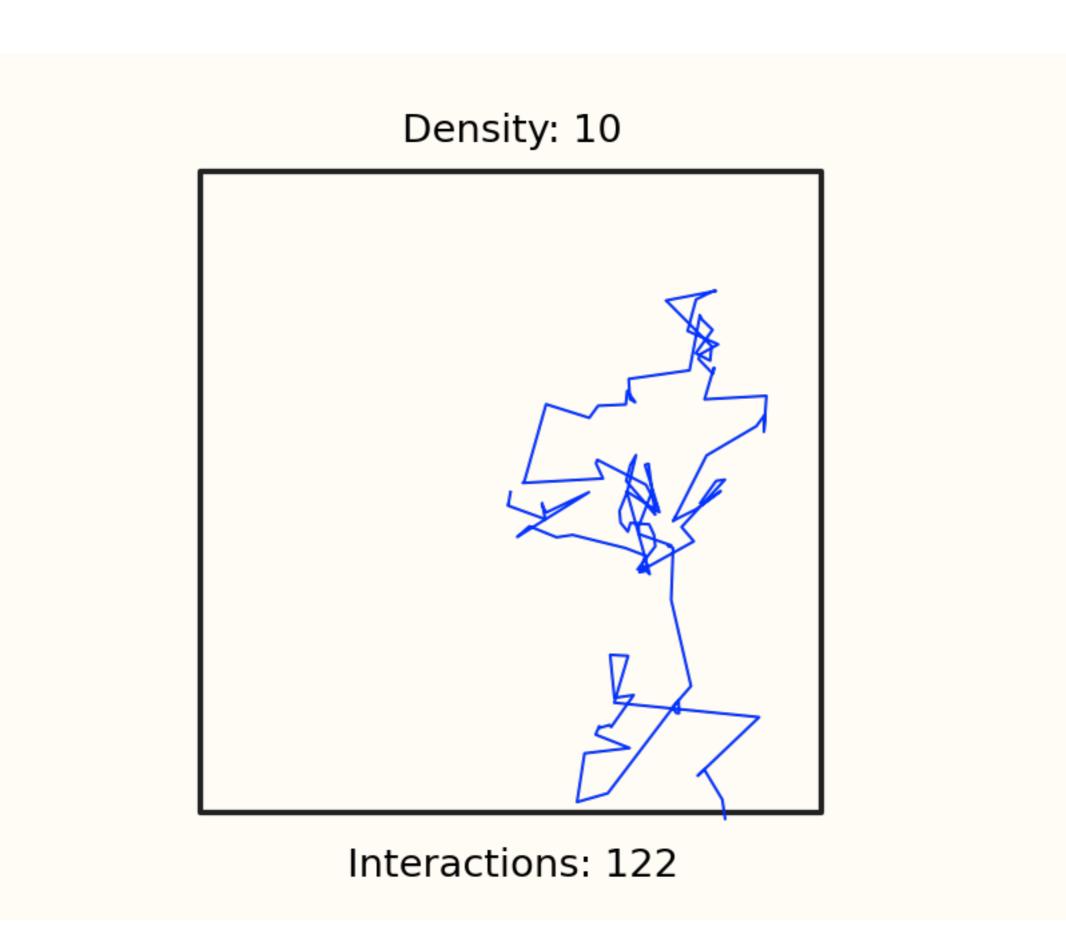
• When the dust is very optically thick

- When the dust is very optically thick
- When the dust is very optically thin

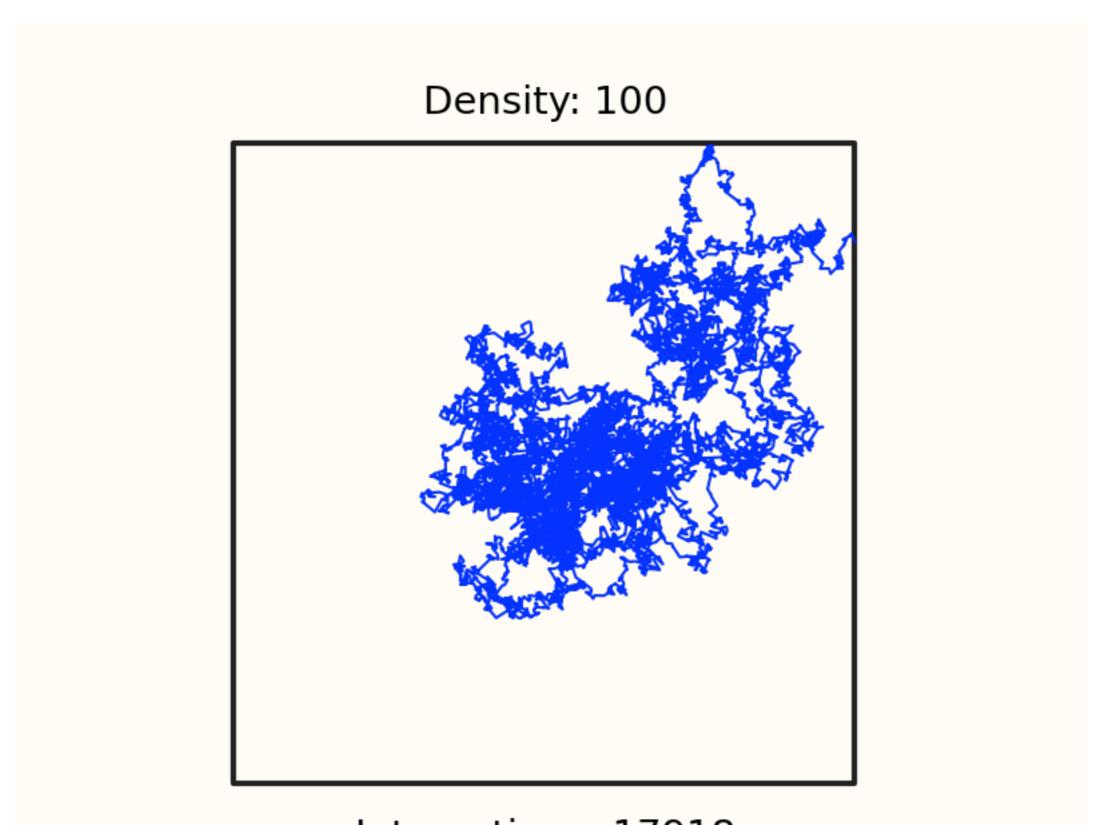
- When the dust is very optically thick
- When the dust is very optically thin
- When we only use escaping photons to produce observables

- When the dust is very optically thick
- When the dust is very optically thin
- When we only use escaping photons to produce observables
- When we look away from the peaks of emissivity



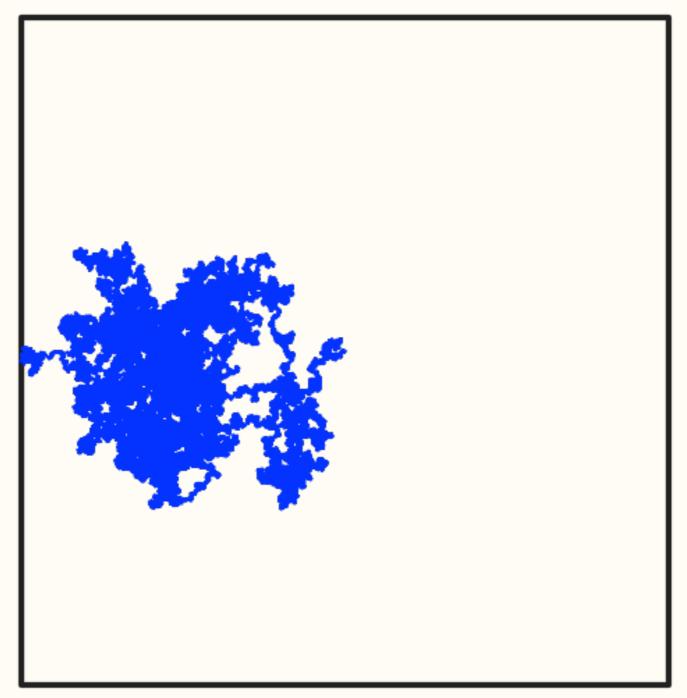


© T. Robitaille



Interactions: 17918

Density: 1000

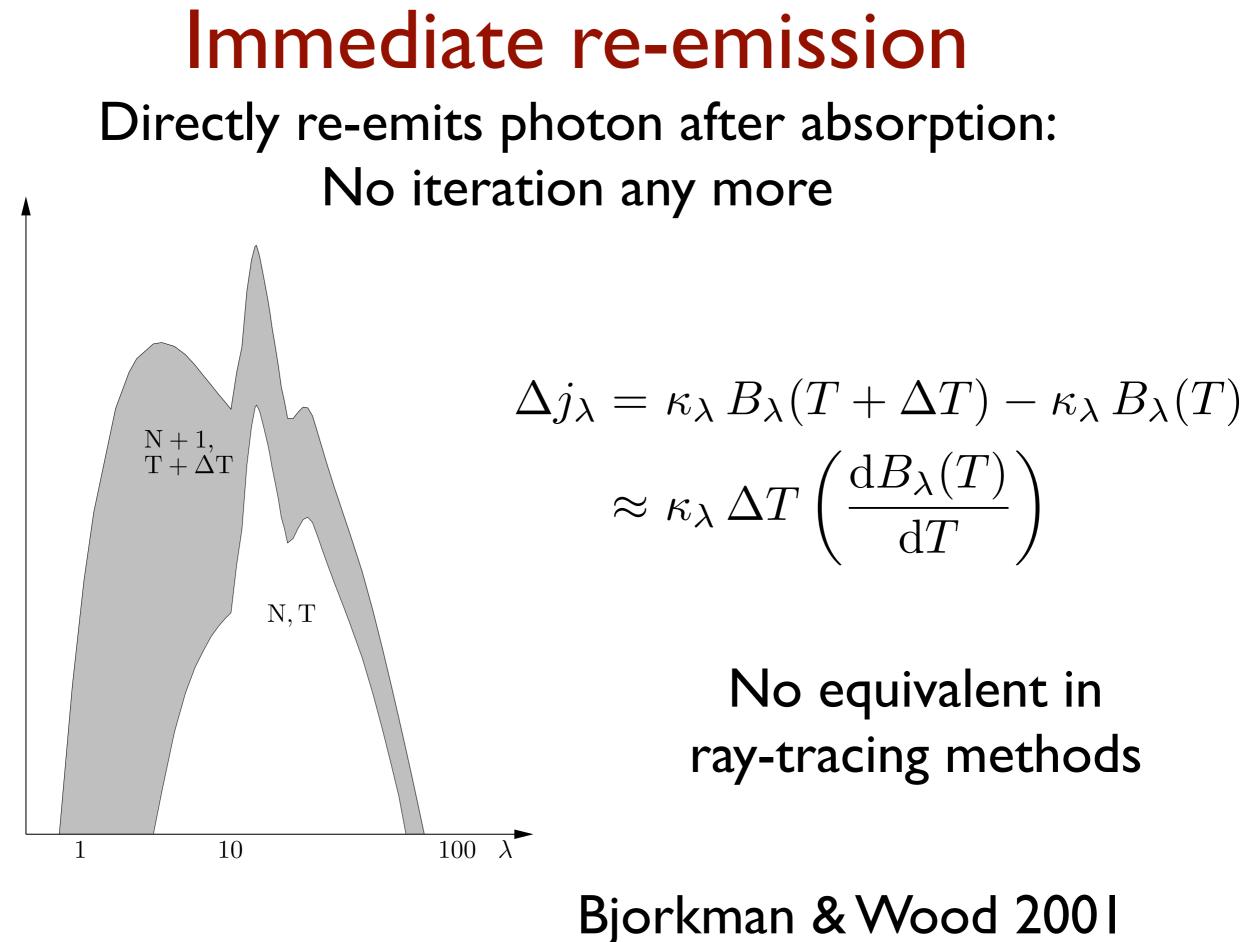


Interactions: 719222

Naive implementation is VERY slow

 many interactions : many photon paths to calculate.
 Even if it happens only to a few photons, this can dominate the computation time

 many interactions : we need many iterations between J and T
 ⇒ a lots of photons are computed for nothing



 $\kappa_\lambda B_\lambda$

Diffusion approximation

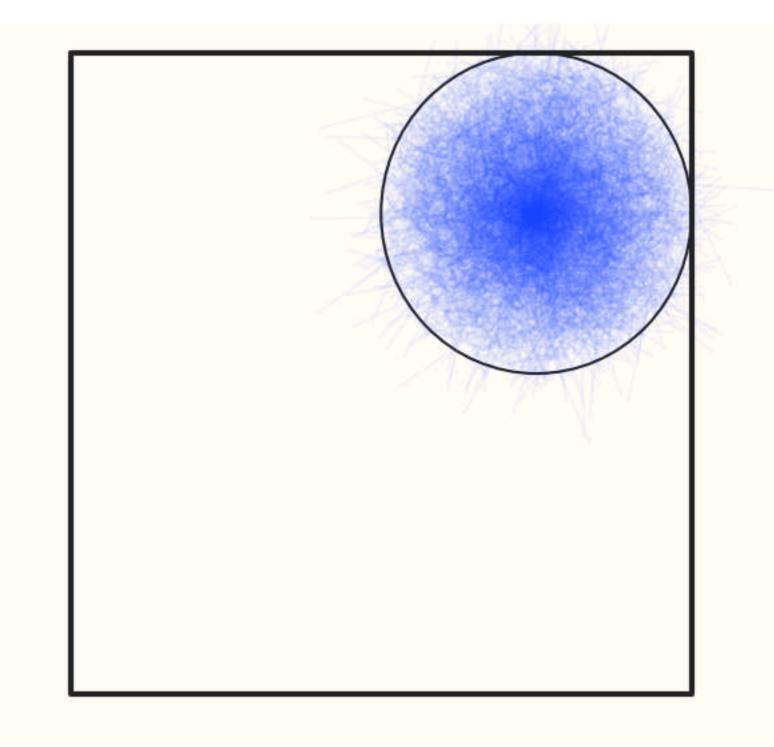
- High optical depth $S_{\lambda} = B_{\lambda}$
- Moment equations $\overrightarrow{F_{\lambda}} = -\frac{4\pi}{3\alpha} \nabla J_{\lambda}$

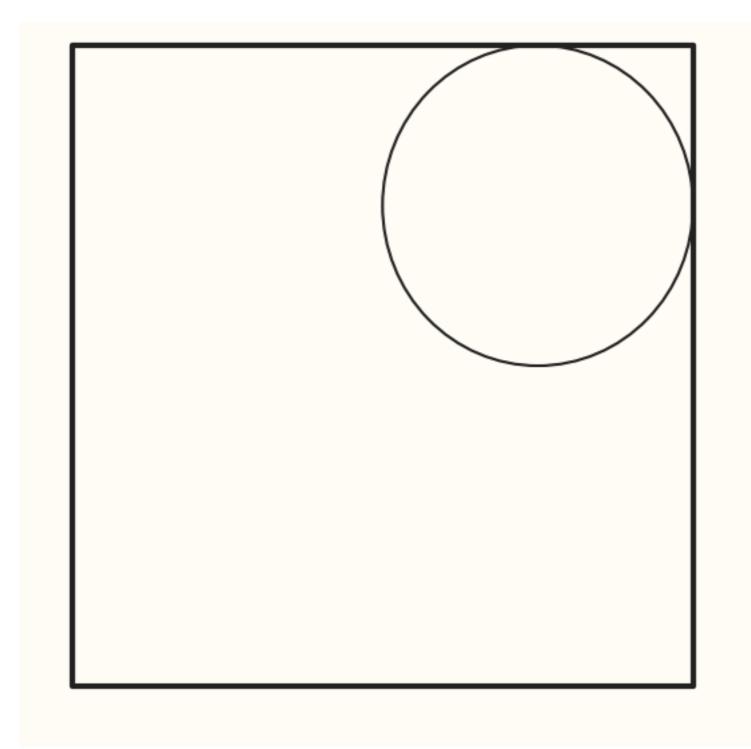
$$\nabla .K_{\lambda} = -\alpha \overrightarrow{H_{\lambda}}$$

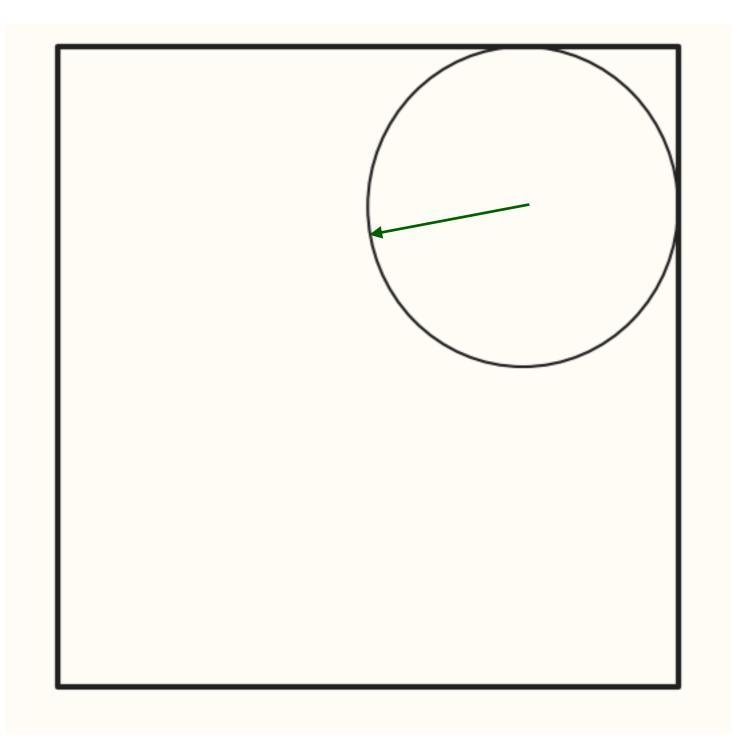
• Eddington approximation $K_{\lambda} = \frac{1}{3} J_{\lambda}$

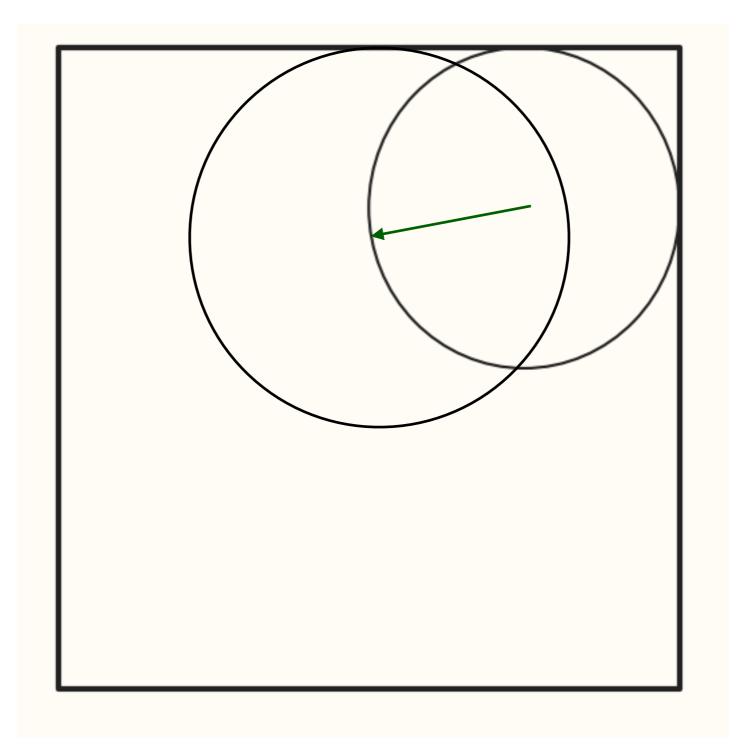
$$\nabla \cdot \left(D \nabla T^4 \right) = 0$$

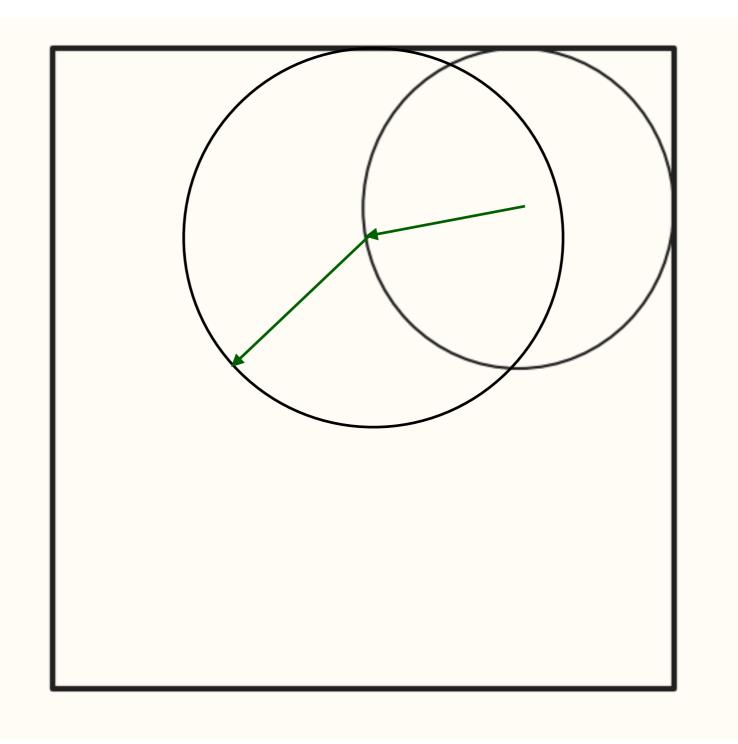
Extremely fast

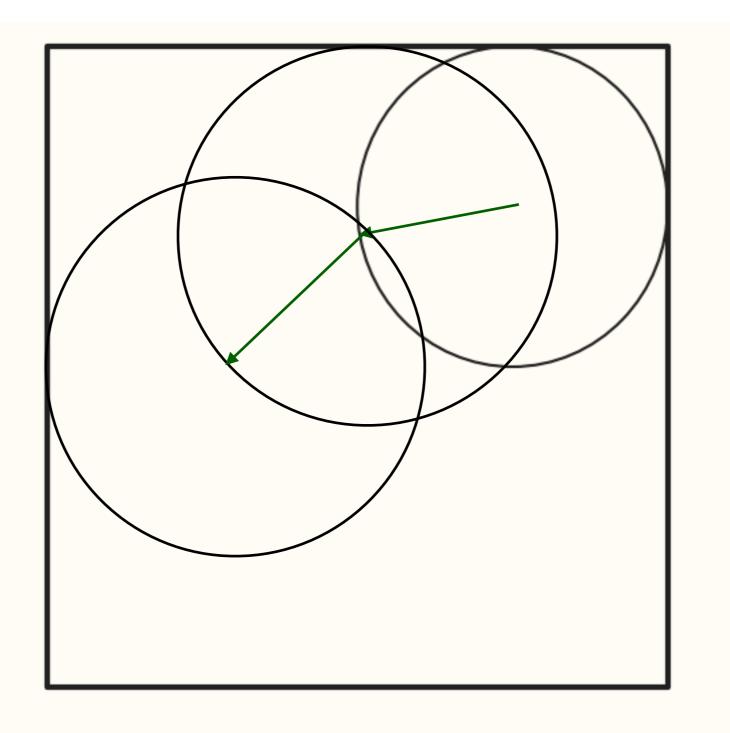


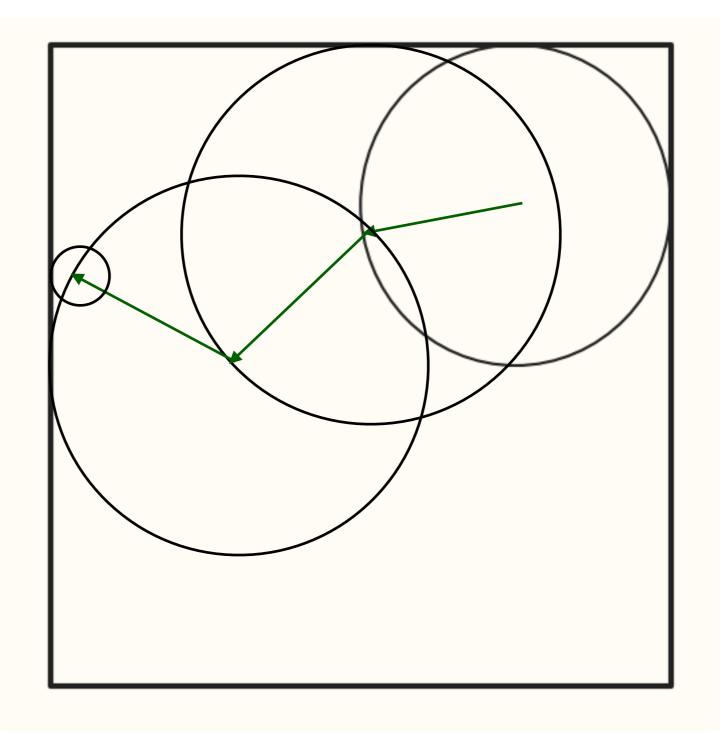




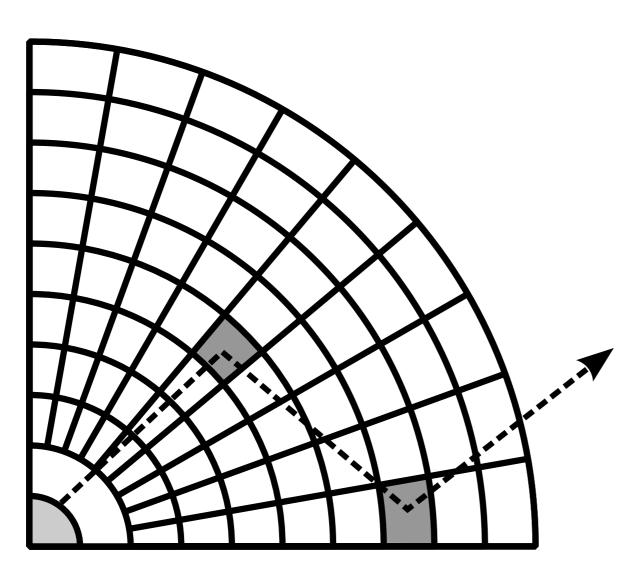






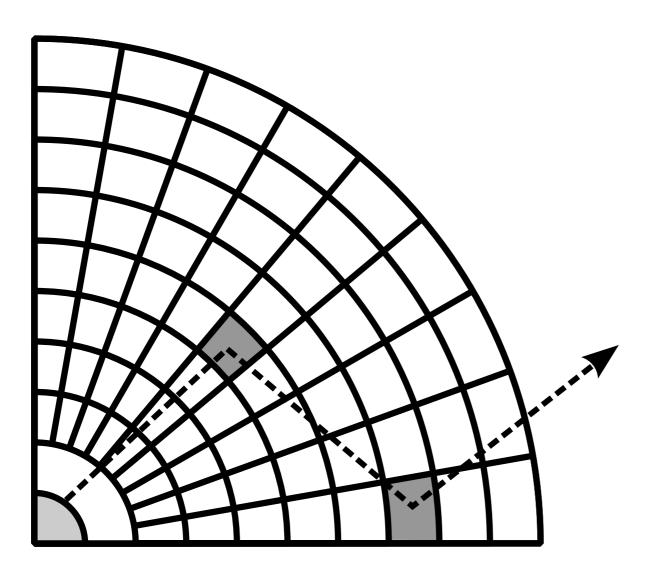


Photons only create information where they interact



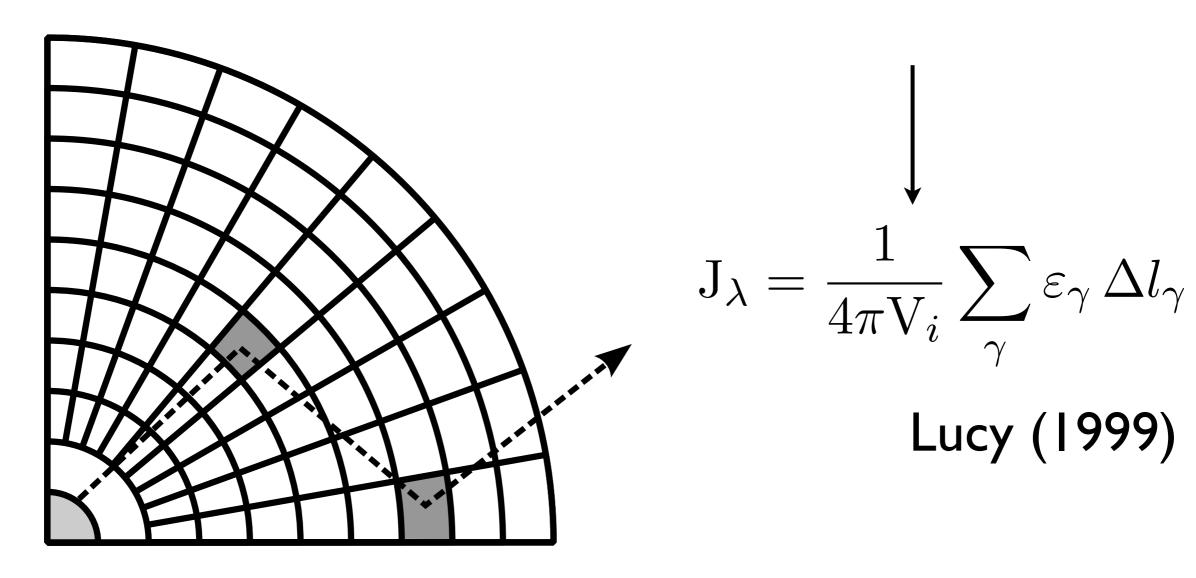
Photons only create information where they interact

$$\int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) B_\lambda(T(\overrightarrow{r})) \, d\lambda = \int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) J_\lambda(\overrightarrow{r}) \, d\lambda$$



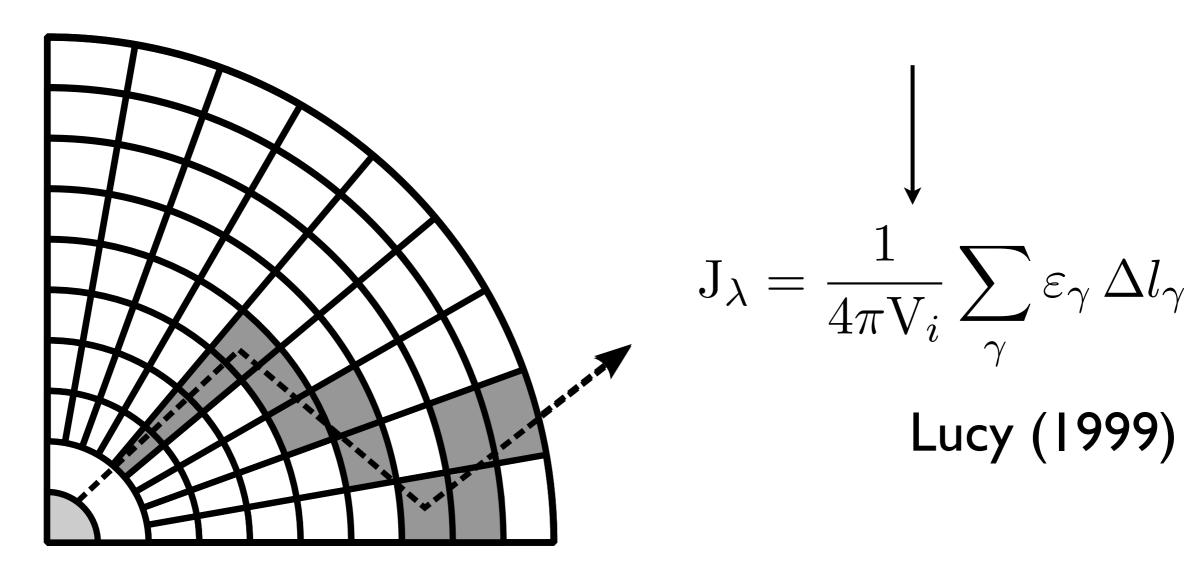
Photons only create information where they interact

$$\int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) B_\lambda(T(\overrightarrow{r})) \, d\lambda = \int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) J_\lambda(\overrightarrow{r}) \, d\lambda$$



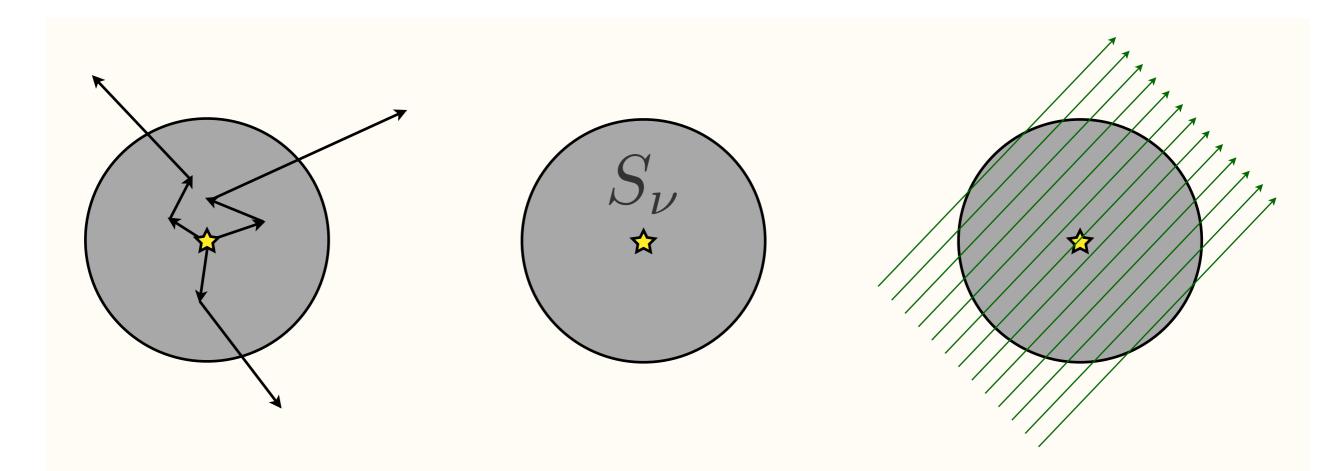
Photons only create information where they interact

$$\int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) B_\lambda(T(\overrightarrow{r})) \, d\lambda = \int_0^\infty \kappa^{\rm abs}(\lambda, \overrightarrow{r}) J_\lambda(\overrightarrow{r}) \, d\lambda$$



Ray tracing

We can do the same for I_{λ} if we also save the directions of the packets

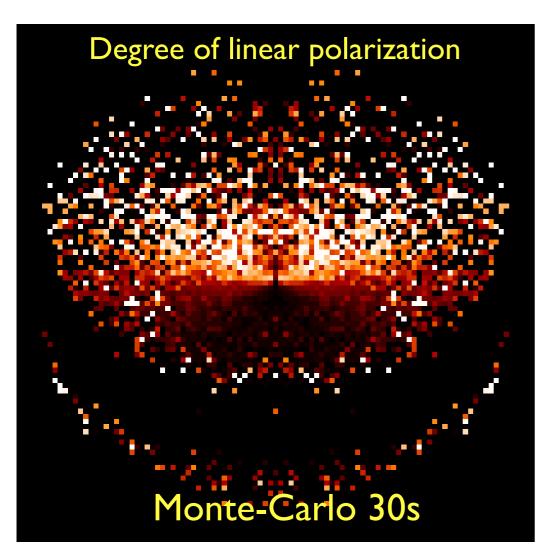


- Pb : takes a lot of memory :
- Alternative : saving scattered intensity for a few directions

$$I_{\lambda}(x, y, z, \theta, \phi)$$

 $\Sigma_{\gamma} \psi_{\lambda}(s, \overrightarrow{n}', \overrightarrow{n}) I_{\lambda}(s, \overrightarrow{n}')$

MC + ray-tracing is VERY efficient



MC + ray-tracing is VERY efficient

