DANIEL MENTIPLAY, DANIEL PRICE, CHRISTOPHE PINTE DUSTY PROTOPLANETARY DISCS WITH PHANTOM + MCFOST

Credit: S. Andrews (Harvard-Smithsonian CfA); B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO)

OVERVIEW

Dusty protoplanetary discs: where planets are born

Tools

- 3d global dust + gas hydro simulations in рнантом
- Radiative transfer and synthetic images in мсгоят
- The nearest gas-rich protoplanetary disc: *TW Hydrae*
- Radiation + hydro = radiative equilibrium hydrodynamics

THE ENVIRONMENT FOR PLANET FORMATION

Discs around young stars in Orion Nebula

Star cluster formation simulation

Credit: NASA, ESA and L. Ricci (ESO).

Credit: Matthew Bate

KEPLER ORRERY IV

Planetary systems discovered by Kepler

OBSERVATIONS OF PROTOPLANETARY DISCS IN THE ALMA ERA

DUSTY PROTOPLANETARY DISCS

Credit: Benisty+2015, Garufi+2016, van Boekel+2017, Casassus2016

DUSTY PROTOPLANETARY DISCS

DUST DYNAMICS IN PROTOPLANETARY DISCS

Dimensionless stopping time

- St « 1 (µm grains):
- Dust stuck to gas
- St >> 1 (cm+ grains):
- Dust de-coupled from gas
- St ~ 1 (mm/sub-mm grains):
- Dust responds strongly via drag force

gas in sub-Keplerian orbit + dust in Keplerian orbit = dust drag

DUSTY PROTOPLANETARY DISCS

PLANET-DISC INTERACTION: GAP OPENING

Drag *resisted* regime: gap opened by tidal torque alone

Drag *assisted* regime: gap opened by tidal torque + drag

Credit: Dipierro+2016

SPH WITH PHANTOM

- Smoothed Particle
 Hydrodynamics–fluid is
 discretised into particles
- Density is a weighted sum over neighbours
- Equations of motion from
 Lagrangian: good conservation
- Resolution follows the mass
- Global discs in 3d including dust, planets, binaries, etc.

Credit: Price2012

DUST IN PHANTOM

We treat dust as a pressure-less fluid

Two methods

2-fluid: separate set of particles for dust grains; see figure

1-fluid: one set of particles, evolve dust-fraction on gas particles

Note:

Only one grain size per calculation

Dust (and gas) can interact gravitationally with stars and embedded planets

Credit: Laibe+Price2012, NASA/JPL

METHODS: RADIATIVE TRANSFER

STELLAR IRRADIATION

- Dust sets opacity
- Radiation sets the disc temperature
- Compare with observation

Dust in hot upper layers of disc reprocesses starlight

Credit: Dullemond+2007, Armitage2010

MONTE CARLO RADIATIVE TRANSFER WITH MCFOST

- Absorption, emission, scattering, polarisation
- Frequency-dependent
- Determine disc temperature

- Voronoi-mesh for SPH data
- Post-process PHANTOM simulations– produce synthetic observations

Credit: Pinte2015, Camps2013

THE NEAREST GAS-RICH PROTOPLANETARY DISC

- Distance: 59.5 pc (Gaia) ⇒ very close, cf. Taurus at 140 pc
- Age: ≈10 Myr ⇒ older than expected
- Disc mass (gas): ~10⁻⁴ 10⁻¹ M_☉ ⇒ debate in literature
- Face-on: inclination ~7°
 ⇒ can see dust features (if there)

Credit: Andrews+2012, Mamajek2009

TW HYDRAE

ALMA AND SPHERE OBSERVATIONS

R[AU]

PHANTOM DUST+GAS HYDRO SIMULATION

Rendered column density movie over 65 orbits at 41 au (location of middle planet)

TW HYDRAE

SYNTHETIC OBSERVATIONS IN MCFOST

 870 µm continuum emission: MCFOST + CASA ALMA simulator

 1.6 µm polarised scattered light: MCFOST + artificial noise

Credit: van Boekel+2017, Andrews+2016

PLANETARY ACCRETION

Super-Earths

10%: from 8 to \approx 9 M_{\oplus}

M [M_⊕/yr]

<u>Saturn</u>

10%: from 0.3 to 0.32 $M_{\rm J}$

STELLAR ACCRETION RATE

- Measured accretion
 rate ≈ 1.5×10⁻⁹ M_☉/
 yr
- Could increase
 viscosity BUT

planets accrete too much

 \Rightarrow gaps too wide

 $M_{41au} = 12 M_{\oplus}$

 $M_{41au} = 8 M_{\oplus}$ $M_{41au} = 8 M_{\oplus}$

Initial planet masses

RESULTS

- \blacktriangleright We explain the narrow gaps in ALMA dust emission with super-Earths (8–10 M_{\oplus}) at 24 and 41 au.
- We explain the dip in scattered light with a Saturn-mass planet at 94 au with mass low enough to hide strong spiral arm within instrument sensitivity.
- We can infer presence of otherwise undetectable planets 'caught in the act' of formation, including super-Earths: the most common planets.

PHANTOM + MCFOST

- Current hydro simulations use vertically isothermal approx.
 - Discs are not vertically isothermal
- Method:
 - Pass SPH particles from
 PHANTOM to MCFOST
 - Use MCFOST to determine disc temperature
 - Pass temperature back

Temperature

WHAT WE CAN DO

- ► PHANTOM (hydrodynamics) → MCFOST (radiative transfer) to compare with observations
- **TW Hydrae:** a pair of super-Earths and Saturn
- **РНАNTOM** (hydrodynamics) + **MCFOST** (radiative transfer)

WHAT WE WANT TO DO

- **PHANTOM** multigrain: all grain sizes together
- **PHANTOM + MCFOST**: radiative equilibrium hydrodynamics
- Dust around cavities: dynamics + radiation

Thanks for listening...

any questions?