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Accuracy and Correctness of SPH and SPMHD
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The KH Instability in SPH

Mon. Not. R. Astron. Soc. 380, 963-978 (2007) doi: 10.1111/].1365-2966.2007.12183.x

Fundamental differences between SPH and grid methods

Oscar Agertz,'* Ben Moore,! Joachim Stadel,! Doug Potter,! Francesco Miniati,?
Justin Read,' Lucio Mayer,” Artur Gawryszczak,® Andrey Kravtsov,* Ake Nordlund,’
Frazer Pearce.® Vicent Quilis,” Douglas Rudd,* Volker Springel,® James Stone,’

Elizabeth Tasker,'” Romain Teyssier,'' James Wadsley'? and Rolf Walder'*
While grid
codes are able to resolve and treat dynamical instabilities and mix-
ing, these processes are poorly or not at all resolved by the current
SPH techniques.

Agertz et al (2007)
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While grid
codes are able to resolve and treat dynamical instabilities and mix-

ing, these processes are poorly or not at all resolved by the current
SPH techniques.

However, it is well known that ‘traditional’ SPH (TSPH) a.l— Agertz et al (2007)
gorithms have a number of problems. They suppress certain
fluid-mixing instabilities (e.g. Kelvin—Helmholtz, KH, instabilities;

Hopkins (2015)
be incorrect. As we have discussed, unsolved conceptual problems
with the accuracy of SPH and its convergence rate remain even in
the most recent incarnations of the proposed improved versions of

SPH. We therefore think that more accurate numerical techniques,
such as our moving-mesh approach, should clearly be preferred

Hayward et al (2014)



All the Mixing (Moving mesh / meshless finite volume)

movine-mesh, 102451024 fined-mesh IIIJL\HF‘
B \.

In the late non-linear phases,

The moving-mesh preserves much more fine o :
it is truly remarkable how much fine-structure is captured by the

detail in the flow.

MFV runs,
. We think this is a very interesting difference, _
which makes the moving-mesh code particularly attractive for the the excentional degree of
study of multi-phase media. resolved sub-structure and small-scale modes.

Springel (2010) Hopkins (2015)



Mo’ mixing, Mo’ problems

* Robertson et al (2010), McNally et al (2012), Lecoanet et
al (2016) introduce KH tests with well-posed initial
conditionsthat demonstrate convergence

Presumedly, more small-scale
structure implies less numerical dissipation, and therefore greater
accuracy. We find in the current paper that this intuition can, in
some cases, lead to false conclusions. ; )

Lecoanetetal (2016)



Mo’ mixing, Mo’ problems

* Robertson et al (2010), McNally et al (2012), Lecoanet et
al (2016) introduce KH tests with well-posed initial
conditionsthat demonstrate convergence

Not all new instabilities seen as resolution is increased

s are physically real.
numerical instabilities can reveal themselves as resolution is
increased, as the flow can enter into new regimes where it is
more sensitive to the inevitable numerical noise in a method.

However, we can show that
for our problem that secondary instabilities that do develop are

of a purely numerical origin. This strongly suggests that the sec-
ondary billows seen in Springel (2011) are a numerical artifact,

McNally et al (2012)




The KH Tests of Lecoanet et al (2016)

* Two-dimensional tests with well-posed initial conditions
* Introduce a scalar “colour” field to measure degree of mixing

* Include physical dissipation, that is Navier-Stokes viscosity and
thermal conductivity (also colour diffusion!)— dissipation is
numerically independent!

* Lecoanet et al (2016) show converged solutions between grid
(Athena) and spectral methods (Dedalus) in the non-linear regime
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Stratified KH Test of Lecoanet et al (2016)

A1024 A4096 Al16384 D2048

1.0

converged here!

converged here!

converged here!
(Y2 billion grid cells!)




SPH Simulations

LA
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* | am using the Re=10~ unstratified (uniform density) KH test (re=

* Comparison to n, = 2048 Dedalus calculation (spectral code)

* Goal: obtain convergence of SPH results towards reference solution
* Resolution: n, =256, 512, 1024, 2048 particles (~8 million)

* Dissipation Implementation: direct second derivative style for Navier-
Stokes viscosity, thermal conduction, and colour diffusion (efficiency,
consistency)
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SPH results



SPH results (n, = 1024 particles)




Colour Entropy

0.35 I I I T
* Define entropy for colour 0.3 |
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* Results are converging towards reference solution

* Numerical dissipation (artificial viscosity) still relevant up till n, = 1024
or 2048, so don’t except convergence yet



L2 error Convergence (t = 2)
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L2 Error

L2 error Convergence (t = 4)
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L2 Error

L2 Error

L2 error Convergence (t = 6)
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Kinetic Energy
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* Dissipation rate of kinetic energy not yet converged!
* Expected from analytic translation of artificial viscosity to physical dissipation
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Colour Entropy for Quintic Spline
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Conclusions

* SPH can activate the Kelvin-Helmholtz instability!
(that is, SPH can do hydrodynamics — not a surprise to anyone in this room)

* May need to use n, = 4096 to achieve formal convergence
(32 million particles — | hope not!)

e Currently running octic and nonic splines (R = 5h!) to check kernel bias
convergence.

* |t may not be as difficult (resolution requirement, kernel bias) to activate KH
as found here for other conditions (i.e., Reynolds number).

* Not shown, but Wendland family of kernels demonstrate same behaviour.

* My belief is that SPH will converge to the agreed solution.



