PHANTOM SIMULATIONS OF A TRANSITING CIRCUMBINARY DISC

Amena Faruqi, Grant Kennedy, Rebecca Nealon, Sahl Rowther

Monday 13 February 2023

Credit: Mark Garlick, University of Warwick.

BACKGROUND & MOTIVATION

Circumstellar disc properties can be difficult to directly measure...

Is there a way to constrain these?

(See also: Rodriguez et al. 2014, Kloppenborg et al. 2010...)

HD98800

- Stellar trajectories and disc alignment are known.
- AaAb will pass behind the disc in 2026 (Kennedy et al. 2019.)
- Transit can allow us to constrain disc properties.

PROJECT GOALS

- I. Run SPH simulations of HD98800.
- 2. Generate light curves of the expected transit:
 - What affect do disc parameters have on the shape?
 - Which set of parameters will most closely match what we observe?
 - How can synthetic light curves inform observations of real transit event?

I. PHANTOM – SPH MODELS

Phantom code modified to allow 4 sink particles for a disc setup type

Grid of Phantom models run

Dumps files \rightarrow ASCII density grids

2. MCFOST – RADIATIVE TRANSFER MODELS

MCFOST grid created Phantom density data interpolated onto it Grid flipped along x, y MCFOST run on density grids to create optical depth maps

3. PRODUCING A LIGHT CURVE

At each timestep,

- I. Get (x,y) locations of stars Aa and Ab
- 2. Use optical depth map of corresponding timestep to obtain τ along line-of-sight to Aa and Ab.
- 3. Calculate flux drop of each star using

 $F = F_0 \exp(-\tau)$

How do we define the parameter space?

(F_0 taken from Ribas et al. 2018)

DUST AND GAS MASSES

SEDs generated for different dust masses and compared to observational data

3 closest dust masses chosen

Assumed gas-dust ratio of 100 to obtain 3 gas masses

GRID OF MODELS

Orbital parameters for disc and 4 stars taken from Zuniga-Fernandez et al. 2021 and Kennedy et al. 2019.

Model Number	I	2	3	4	6	7	8
$lpha_{S}$ viscosity	0.005	0.005	0.005	0.005	0.005	0.05	0.01
Gas mass (M_{\oplus})	3.3	33	330	33	33	33	33
Dust mass (M_\oplus)	0.33	0.33	0.33	0.033	3.3	0.33	0.33
mena Farugi	Varying gas mass			Varying dust mass		Varying disc viscosity	

All run for ~55 yrs, model 2 rerun for ~1150 yrs to consider outer binary interactions

RESULTS

RESULTS – GAS MASS

RESULTS – ALPHA VISCOSITY

WARWICK THE UNIVERSITY OF WARWICK

RESULTS – DUST MASS

10 AU

Dips widen at disc inner and outer edges

Amena Faruqi

⊔₋₃ |2

-2

10 AU

RESULTS – OUTER BINARY INTERACTIONS

Dips widen, asymmetry in light curve observed

Amena Faruqi

WARW

3

-2

-0

-2

-3

10 AU

. 60

THE UNIVERSITY OF WARWICK

REAL OBSERVATIONS

Minimum cadence needed to observe fastest changes: ~ 6 days (assuming $\Delta F \ge 5\%$ to be detectable).

Observe from mid 2023 to early 2033, ideally

LCO has begun observing HD98800

SUMMARY

- Phantom/MCFOST used to produce synthetic light curves of future transit event.
- Disc parameters directly affect observations.
- Synthetic observations like these can help connect theoretical and observational work.

