Kinematics and dynamics of gravitationally unstable discs with PHANTOM

PHANTOM and MCFOST users workshop 2023 Monash University

Cristiano Longarini, University of Milan

<u>Giuseppe Lodato, UNIMI</u> <u>Philip Armitage, Stony Brook</u> <u>Daniel Price, Monash</u> <u>Benedetta Veronesi, Lyon</u> <u>Jason P. Terry, UGA</u> <u>Cassandra Hall, UGA</u>

SG and GI in accretion discs

Self gravity

The gravitational attraction of the gas itself contributes to the total gravitational potential

Main consequences:

- Super-Keplerian rotation curve (**Benedetta's** talk)

- Thickness of the disc

Gravitational instability

Linear hydrodynamical instability that can arise in self gravitating systems

Main consequences:

- Spiral density waves (in density and velocity)

- Transport of angular momentum and fragmentation

Class 0

Class I

Class II (classical T Tauri star)

 M_d

Decreasing

Tobin+2017

Important to understand the outcome of GI in order to understand how planet formation works

Pérez+ 2016

Gravitational instability: linear theory

$$Q = \frac{C\kappa}{\pi G\Sigma}$$

Stabilising

Destabilising

- Q > 1 stability ($\omega^2 > 0$)
- Q < 1 instability ($\omega^2 < 0$)

Beyond linear theory

Saturation:

Spiral structure heats the disc with shocks balancing the cooling.

 \rightarrow angular momentum transport

Fragmentation:

 \rightarrow fragmentation of the disc

Spiral structure does not balance the cooling. Exp growth of the perturbation

Beyond linear theory

Saturation:

Fragmentation:

 \rightarrow fragmentation of the disc

Spiral structure does not balance the cooling. Exp growth of the perturbation

Beyond linear theory

Saturation:

Fragmentation: Spiral structure does not below **FEEDBACK** growth of the perturbation \rightarrow fragmentation of the **POSITIVE FEEDBACK**

GI: main characteristics

GI: main characteristics

GI: main characteristics

	β_{cr}	Method
Gammie 2001	$\beta_{cr} = 3$	2D local simulations
Rice et al. 2005	$\beta_{cr} \simeq 6$	3D SPH simulations
Meru & Bate 2012	$\beta_{cr} > 15$	3D SPH & 2D grid Non convergence
Deng et al. 2018	$\beta_{cr} = 3$	3D SPH & 3d MFM (grid Convergence

GI : main characteristics

Determines the strength of spiral perturbation and the angular momentum transport

Massive discs show fewer spiral arms and more open spirals

GI : main characteristics

Determines the strength of spiral perturbation and the angular momentum transport

Disc to star mass ratio global behaviour - morphology

Determines the morphology of the spiral

Cooling factor

$\delta \Sigma / \Sigma \propto \beta^{-1/2}$

Cooling factor

$\delta \Sigma / \Sigma \propto \beta^{-1/2}$

Cooling factor

$\delta \Sigma / \Sigma \propto \beta^{-1/2}$

Disc to star mass ratio

 M_d/M_{\star}

Disc to star mass ratio

 M_d/M_{\star}

Disc to star mass ratio

 M_d/M_{\star}

Gas kinematics in GI discs

Terry+ 2021

Hall+ 2020

Protoplanetary discs kinematics

- Doppler shift of molecular emission (^{12}CO) , ¹³CO, C¹⁸O, ...) \rightarrow local gas velocity
- Because of projection effects, we measure

 $v_{obs} = v_r \sin \phi \sin i + v_\phi \cos \phi \sin i + v_z \cos i$

 We observe several deviations from Keplerian rotation that give insights about processes in discs

Pinte+ 2018

Bae+ 2021

Hall+ 2020

Kinematic deviations induced by GI

- observations (PHANTOM + MCFOST) called wiggles
- spiral characteristics \rightarrow opening angle, number of arms, amplitude

• Hall 2020 found that GI has clear kinematic signatures in molecular line

• The nature of the signatures is global and their shape is determined by the

Analytical "GI Wiggle"

1st order perturbations to the fluid equations and we solve for the velocity

$$v_{r1} = \frac{i}{\Delta} \left[(\omega - m\Omega)\partial_r (\Phi_1 + h_1) - \frac{2m\Omega}{r} (\Phi_1 + h_1) \right], \quad v_{\phi 1} = -\frac{1}{\Delta} \left[2B\partial_r (\Phi_1 + h_1) + \frac{m(\omega - m\Omega)}{r} (\Phi_1 + h_1) \right]$$

$$\Delta = \kappa^2 - (\omega - m\Omega)^2$$

- <u>Hypotheses</u>:
 - Thin disc (r, ϕ)
 - Marginally unstable disc $Q \simeq 1$
 - Thermal saturation $\delta\Sigma\propto\beta_c^{-1/2}$
 - Nearly Keplerian disc $\kappa \simeq \Omega$

$$\delta v_r = 2im\chi \beta_c^{-1/2} \left(\frac{M_d}{M_\star}\right)^2 v_k$$
$$\delta v_\phi = -\frac{i\chi \beta_c^{-1/2}}{2} \left(\frac{M_d}{M_\star}\right) v_k$$

Analytical "GI Wiggle"

$v_{obs} = v_r \sin \phi \sin i + v_\phi \cos \phi \sin i + v_z \cos i$

- The perturbation is global rather than localised
- The central channel is not a straight line

Longarini+ 2021

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = -1.25 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = -1km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = -0.75 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = -0.5 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = -0.25 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 0km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 0.25 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 0.5 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 0.75 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 1 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 1.25 km/s$

$$M_{\star} = 0.5 M_{\odot}$$
$$M_d = 0.1 M_{\odot}$$
$$\beta = 7$$
$$i = 30^{\circ}$$

 $v_{obs} = 1.5 km/s$

Analytical "GI Wiggle"

$$v_{obs} - v_k^{obs}$$
 [km/s]

Longarini+ 2021

Shape of the perturbation

- Amplitude decreases with the cooling factor
- Amplitude increases with disc mass *Terry+ 2021*

- Frequency increases with azimuthal wavenumber
- Frequency decreases with opening angle

Constraining the cooling factor

- Degeneracy between mass and cooling. How to break? Rotation curve! Veronesi+ 2021
- Amplitude of the wiggle scaling $\mathscr{A} \propto \beta_c^{-1/2}$ $\rightarrow \delta v_r, \delta v_\phi \propto \beta_c^{-1/2}$
- Knowing the mass, we can constrain the cooling trough the amplitude

Testing the model

- The amplitude of the wiggle increases with the disc mass as expected

• Relationship between frequency and # spiral arms + pitch angle as expected

Testing the model

(a

- Constraining protoplanetary disc cooling: (disc mass from rotation curve) Simulation = 8, Model = 9
- dissipation due to viscosity

• The shape of the wiggle is retrieved \rightarrow attention to the orientation of the spiral,

An actual case: Elias 2-27

Elias 2-27 is a self gravitating disc:

 $-M_{\star} = 0.4M_{\odot}, M_d = 0.08M_{\odot}$ (*Veronesi+ 2021*)

- It shows deviations from Keplerian motion in velocity field

Constraining cooling - angular momentum transport through kinematics

Longarini, Clarke, Lodato et al in prep

An actual case: Elias 2-27

 $\alpha_{GI} = 0.038$ into the self-similar solution

$$\rightarrow \dot{M}_{\star} = -\frac{3\alpha}{2} \left(\frac{H}{R}\right)_{R_c}^2 M_d \Omega_c$$

Measured accretion rate: $\log \dot{M}_{Elias}[M_{\odot}/yr] = -7.2 \pm 0.5$

Estimated from gravito-turbulence: $\log \dot{M}_{GI}[M_{\odot}/yr] = -6.9 \pm 0.16$ (Error from star and disc masses)

Compatible!

Longarini, Clarke, Lodato et al in prep

Dust dynamics in Gl discs

Dust dynamics in GI discs

Complementary to Sahl's one, Thanks for feedbacks and discussion!

What we know so far

Rice et al. 2004, 2006

First 3D SPH simulations of gas and dust GI discs. - Efficient dust trapping inside spiral arms

- Dust is so unstable that collapses ~ $1M_{\oplus}$ planetesimals? Warning: Low resolution, not able to properly resolve dust

clumps

Booth & Clarke 2016

2D SPH simulations of gas and dust GI discs.

- Important parameter is dust dispersion velocity C_d

 $-c_d \propto St^{1/2}\beta^{-1/2}$

What we know so far

Longarini et al. 2023

Analytical theory: stability of a dusty GI disc

- The presence of dust makes the system more unstable - If dust is sufficiently cold and abundant, it can drive instability at small wavelengths

What are we doing:

PHANTOM simulations of gas and dust GI discs, 2 fluids implementation, to compare to the linear theory and study parameters space

What we know so far

Longarini et al. 2023

Analytical theory: stability of a dusty GI disc

- The presence of dust makes the system more unstable - If dust is sufficiently cold and abundant, it can drive instability at small wavelengths

What are we doing:

PHANTOM simulations of gas and dust GI discs, 2 fluids implementation, to compare to the linear theory and study parameters space

What happens to dust?

Dust grain

Spiral arm

What happens to dust?

Dust grain

Spiral arm

Efficiently excited: Stronger kick if

- Low β
- Low M_d/M_{\star}
- High St

Not efficiently excited: Weaker kick if

- High β
- High M_d/M_{\star} - Low St

Hydro simulations

1M - 2M gas particles 250K - 500K dust particles

GI parameters $\beta, M_d/M_{\star}$

	Simulation	M_d/M_{\star}	$\beta_{\rm cool}$	s [cm]	(St)	s10 [
PHANTON	SI SI	0.05	8	300	40	3
	S2	0.05	10	300	40	3
March Color Color Color	\$3	0.05	15	300	40	3
	S4	0.05	8	60	8	0.6
	S5	0.05	10	60	8	0.6
	S6	0.05	15	60	8	0.6
	S7	0.1	8	600	40	6
T SMALL DUST	S8	0.1	10	600	40	6
	S9	0.1	15	600	40	6
	S10	0.1	8	120	8	1.2
	S11	0.1	10	120	8	1.2
	S12	0.1	15	120	8	1.2
	S13	0.2	8	1500	40	15
	S14	0.2	10	1500	40	15
Dust parameters	S15	0.2	15	1500	40	15
	S16	0.2	8	600	16	6
ϵ : dust to gas ratio	S17	0.2	10	600	16	6
	S18	0.2	15	600	16	6

 c_d : dispersion velocity

Dust dispersion velocity

<u>Higher disc to star mass</u> ratio = less spiral arms \rightarrow Dust receives less kicks from the spiral

<u>Higher beta-factor =</u> weaker spiral arms \rightarrow Spiral potential well is shallower

Aerodynamical coupling damps the spiral kick

 \rightarrow Uncoupled particles are excited more

Dust dispersion velocity

 $c_d \propto S t^{1/2} \beta^{-1/2}$

Dust collapse

We observe dust collapse only for

Mass of the clump $M_{cl} \simeq 0.8 M_{\oplus}$

Dust collapse

We observe dust

- Higher disc to s
- Long cooling (
- Small dust part

Mass of the clum

 $t_s \propto (\rho_g + \rho_d)^{-1} \to 0$

Stopping time < tilmestep

SINK!

$M_d/M_{\star} = 0.2,$ $\beta = 15$

Summary

- Gravitational instability is significant in Class0-Class1 objects \rightarrow difficult to observe because of cloud contamination
- Kinematic signatures could be a smoking gun for GI \rightarrow connection to angular momentum transport
- Dust in GI scenario could be a way to solve the problem of planetesimals
- But, most importantly

and applicability

