Phantom impostor II

Evgeni Grishin (Monash) Phantom workshop, 16.02.2023 Melbourne, VIC, Australia

Binary / multiple interactions with gas occur on many scales \widehat{f}_{20}

List of topics

Protoplanetary discs Planet formation Star formation Stellar flybys Black hole accretion Common envelope interaction Binary and triple stars Tidal disruption events Software development

Binary / multiple interactions with gas occur on many scales \widehat{f}_{20}

4

We have used SPH to model a collision between Kuiper Belt Objects (KBOs)

muliphCUDA (Schäfer+2016)

A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects*

C. Schäfer¹, S. Riecker¹, T. I. Maindl², R. Speith³, S. Scherrer¹, and W. Kley¹

The wide-binary origin of (2014) MU₆₉-like Kuiper belt contact binaries

Evgeni Grishin 🖂, Uri Malamud, Hagai B. Perets, Oliver Wandel & Christoph M. Schäfer

Nature 580, 463-466 (2020) | Cite this article

Iniversity

Stern+19, Science

Orbit axis

Three body dynamics (wide binary + Sun) provide the initial conditions for the SPH simulations

High V impact

2

4

6

 $\log_{10}(t / yr)$

planets
$$(W)_{8}$$

blanetesimals
pebbles 0
-2
dust -4

 \cap

$$planets \bigvee_{0}^{(U)} \bigotimes_{0}^{0} \sum_{5}^{0} \sum_{5}^{0} planetesimals}$$

$$pebbles \begin{cases} 2 \\ 0 \\ -2 \\ dust = 4 \end{cases}$$

$$X = 0 \qquad 2 \qquad 4 \qquad 6 \log_{10}(t/yr)$$

NAT

UNUEISILY

Giant planets could form early

planets 8 10g10 (R/cm) Gravitational growth Too slow?! planetesimals pebbles 0 Sticking -2 easy dust -4 $\mathbf{0}$ 2 $\log_{10}(t / yr)$ 4 6

planets ^(m) ^[0] Gravitational growth + Pebble accretion (Ormel & Klahr 2010; Perets & Murray-Clay 2011; Lambrechts & Johansen 2012) planetesimals easy! pebbles 0 Sticking -2 easy dust -4 \cap 2 Δ $\log_{10}(t / yr)$ 6

2

planets (R/cm) 0 glio (R/cm) planetesimals pebbles $\mathbf{0}$ -2 dust -4

 \cap

Planetesimals? Culprit: large ΔV Many Barriers: Radial drift (Weidenschilling 1977) Fragmentation (Blum and Münch 1993) Aeolian Erosion (Rozner, Grishin+2020, **Grishin**+2020) Sticking easy

Δ

 $\log_{10}(t / yr)$

6

Streaming instability is a promising channel for planet formation

- Two fluid approximation: Feedback on the gas makes dust grains to accumulate
- For local dust-to-gas ratio > 1 gravitational collapse occurs (Youdin and Goodman, 2005; Johansen+2007, Nat)
- Successful in reproducing Kuiper belt binary orientations (Nesvorny+2019, NatAs)

Video: David Nesvorny

Streaming instability is not converging for large number

Previous SI simulations work well with Stokes number τ ~0.1

 $\mathbf{\tau} = \Omega \mathbf{m} |\mathbf{v}| / \mathbf{F}_{\mathbf{D}} = \Omega \mathbf{t}_{\mathbf{S}}$

• Convergence with multiple dust sizes is poor (Krapp+2019)

Jniversitv

Planetesimal formation. We anticipate that the multi-species streaming instability could still be an efficient mechanism to enable planetesimal formation if dust particles are filtered/ segregated according to their size and accumulated somewhere in the disk. This will naturally produce regions with large

Aeolian erosion is fast and could be the size segregation mechanism

- Aeolian erosion was observed in wind tunnel experiments
- Aeolian erosion naturally segregates dust grains (Rozner, Grishin+2020; Grishin+2020)

 10^{0}

a au

10

Capture of interstellar planetesimals can be the missing source for planetesimals

Capture of interstellar planetesimals can be the missing source for planetesimals

Can Phantom simulate feedback on the disc?

- Protoplanetary discs can capture many planetesimals
- Good for CAI's planet formation in clusters, lithopanspermia?
- Feedback from ablation?! (Pinhas+2016)

Merger of black holes (and other several object) has several avenues for formation

Various formation channels (Mandel & Broekgaarden 2022)

- Isolated binaries
- Dynamical formation: field triples, open/globular clusters
- Galactic nuclei
 - Nuclear stellar cluster
 - Active galactic nuclear (AGN) disc

Tagawa+(2020), Nat.

AGN discs have uncertain physics

- The AGN channel relies on migration + pile up (Bellovary+2016; Tagawa+2020)
- Analogous to planetary migration
- Luminous planets in optically thick medium tend to add extra "thermal torque" (Lega+2014; Benitez-Llambay+2015)
- BHs in AGN dics should radiate close to L_{Edd}

xk.

Exploration of thermal AGN torques is in its infancy

 Preliminary exploration of luminous BH in accretion discs with grid codes (Athena++, Hankla+2020)

Exploration of thermal AGN torques is in its infancy

- The total torque is altered (**Grishin**+23, in prep.)
- Thermal conductivity is very large (non-linear)

Jniversit

Star formation can occur in explosive environments, including tidal disruption near a SMBH

- Stars form in weird environments (Maiolino+2016)
- TDE can trigger star formation (Zubovas, 2019; Perna & Grishin, 2022)
- Expanding cocoon from a TDE can compress clouds
- What happens to a shocked cloud near an SMBH?

Star formation inside a galactic outflow

R. Maiolino^{1,2}, H. R. Russell³, A. C. Fabian³, S. Carniani^{1,2}, R. Gallagher^{1,2}, S. Cazzoli⁴, S. Arribas⁴, F. Belfiore^{1,2}, E. Bellocchi⁴, L. Colina⁴, G. Cresci⁵, W. Ishibashi⁶, A. Marconi^{5,7}, F. Mannucci⁵, E. Oliva⁵ & E. Sturm⁸

