Shaping of AGB outflows by wind-companion interactions

Jolien Malfait

Leen Decin, Lionel Siess (ULB), Frederik De Ceuster, Silke Maes, Mats Esseldeurs, Thomas Ceulemans

Institute of Astronomy, KU Leuven, Belgium

Phantom users workshop

Monash University, Melbourne, Australia Feb 13-17, 2023

AGB stars

- Evolved low- and intermediate mass stars Initial mass : ~ 0.8 - 8 M_{\odot}

JOLIEN MALFAIT

AGB stars

- Evolved low- and intermediate mass stars Initial mass : ~ 0.8 8 M_{\odot}
- Pulsation-enhanced dust-driven stellar wind v_{∞} ~ 5 30 km/s , \dot{M} ~ 10⁻⁸ 10⁻⁵ M_{\odot}/yr

AGB stars

- Evolved low- and intermediate mass stars Initial mass : ~ 0.8 8 M_{\odot}
- Pulsation-enhanced dust-driven stellar wind v_~ 5 30 km/s , \dot{M} ~ 10^{-8} 10^{-5} M_{\odot}/yr
- For decades outflows assumed to be spherically symmetric --> 1D models

AGB stars

- Evolved low- and intermediate mass stars Initial mass : ~ 0.8 8 M_{\odot}
- Pulsation-enhanced dust-driven stellar wind v_{∞} ~ 5 30 km/s , \dot{M} ~ 10⁻⁸ 10⁻⁵ M_{\odot}/yr
- For decades outflows assumed to be spherically symmetric --> 1D models
- Progenitors of post-AGB stars & planetary nebulae with asymmetric morphologies (e.g. Van Winckel+ 2003, Jones & Boffin 2017)

Complex-structured AGB outflows

Decin+ 2020

- ALMA large program ATOMIUM (Decin+ 2020)
- Complex structures in AGB outflows:
 - spirals, arcs, bipolarity, ...
- Primary cause: wind-companion interaction
 - population synthesis (Moe & Di Stefano 2017, Decin+ 2021,...)
 - Observations (indirect!) (e.g. Previous talk by Taissa Danilovich)
 - simulations (e.g. *Malfait+ 2020, Maes+ 2020, ...*)

Challenges & opportunities: 3D

JOLIEN MALFAIT

Challenges & opportunities: 3D

I. Incorrect 1D prescriptions for AGB Mass loss rate, impacted by companion and 3D morphology

Challenges & opportunities: 3D

- I. Incorrect 1D prescriptions for AGB Mass loss rate, impacted by companion and 3D morphology
- II. Bridge gap with **Post-AGB stars** & **Planetary Nebulae**:

Challenges & opportunities: 3D

- I. Incorrect 1D prescriptions for AGB Mass loss rate, impacted by companion and 3D morphology
- II. Bridge gap with Post-AGB stars & Planetary Nebulae:
 - Understand orbital evolution, e.g. highly eccentric orbits (Oomen+ 2018)

e-log *P* distribution of post-AGB stars *Oomen+ 2018*

Challenges & opportunities: 3D

- I. Incorrect 1D prescriptions for AGB Mass loss rate, impacted by companion and 3D morphology
- II. Bridge gap with Post-AGB stars & Planetary Nebulae:
 - Understand orbital evolution, e.g. highly eccentric orbits (Oomen+ 2018)
 - Complex-structured morphologies

Cartoon of structural elements of Post-AGB binary Bollen+ 2022

e-log P distribution of post-AGB stars Oomen+ 2018

AGB outflows vs Planetary nebulae

Caltech/UCLA, [102], AAS/IOP (h); [55], Oxford Univ. Press (i); [69], Oxford Univ. Press (j)

Decin+ 2020

JOLIEN MALFAIT

Challenges & opportunities: 3D

- I. Incorrect 1D prescriptions for AGB Mass loss rate, impacted by companion and 3D morphology
- II. Bridge gap with Post-AGB stars & Planetary Nebulae:
 - Understand orbital evolution, e.g. highly eccentric orbits (Oomen+ 2018)
 - Complex-structured morphologies
- III. Study AGB outflows through observations & modelling
 - ATOMIUM collaboration (PI Leen Decin)

AGB wind model

Frederik

De Ceuster

Daniel Price

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

Maes

AGB wind model

- 3D Smoothed Particle Hydrodynamic (SPH) models with *Phantom* (Price+ 2018, Siess+ 2022)
- Gravity-only AGB star & companion
- Free-wind

(Malfait+ 2021, Maes+ 2021)

HI cooling

(Malfait+ in prep.)

Jolien Malfait

Frederik De Ceuster

Silke

Maes

Leen Decin

KU LEUVEN

Lionel Siess

ULB

AGB wind model

Esseldeurs+ (in prep.), Siess+ 2022

! See talk by Lionel Siess ! (Wednesday 10 AM)

- More accurate wind launching (not free wind):
 - Use of ray tracer to better estimate radiation force & dust T (Esseldeurs+ In prep)
 - Dust nucleation (Siess+ 2022)
 - Pulsations
- More accurate cooling/heating

Jolien Malfait

Frederik De Ceuster

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

• ...

Frederik

De Ceuster

JOLIEN MALFAIT

PHANTOM

AGB wind model: Previous work

Binary parameter space explored:

- Semi-major axis
- Wind velocity
- Companion mass
- Eccentricity

No HI cooling included yet

A&A 653, A25 (2021) https://doi.org/10.1051/0004-6361/202140823 © ESO 2021

Astronomy Astrophysics

а

 V_{w}

m

е

SPH modelling of companion-perturbed AGB outflows including a new morphology classification scheme

S. Maes¹[©], W. Homan^{2,1}[©], J. Malfait¹[©], L. Siess², J. Bolte¹[©], F. De Ceuster^{3,1}[©], and L. Decin^{1,4}

¹ Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

c-mail: silke.maes@kuleuven.be

- ² Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles (ULB), CP 226, 1050 Brussels, Belgium ³ Department of Physics and Astrophysical London Gower Place London WCIE 6BT UK
- ³ Department of Physics and Astronomy, University College London, Gower Place, London, WC1E 6BT, UK ⁴ School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Received 17 March 2021 / Accepted 30 June 2021

Maes+ 2021:

Focus on **terminal wind velocity** and **morphology classification parameter**

JOLIEN MALFAIT

Malfait+ 2021 Maes+ 2021

Wind-companion interaction

 $\left[\begin{array}{c} \varepsilon \lesssim 1 & : \mbox{limited impact companion} => \mbox{Regular spiral morphology} \\ \varepsilon \gg 1 & : \mbox{stronger impact companion} => \mbox{Rather irregular morphology} \end{array} \right]$

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

Malfait+ 2021 Maes+ 2021

Malfait+ 2021 Maes+ 2021 Malfait+ 2023 (in prep)

Binary systems: setup

Malfait+ 2023 (in prep)

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

Orbital plane

Malfait+ 2023 (in prep)

Morphology types: binary systems

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

Orbital plane view

JOLIEN MALFAIT

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

17

Orbital plane view

Malfait+ 2023 (in prep)

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

JOLIEN MALFAIT

17

Orbital plane

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

Orbital plane view

Malfait+ 2023 (in prep)

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

17

Orbital plane

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

JOLIEN MALFAIT

Orbital plane view

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

JOLIEN MALFAIT

Orbital plane view

JOLIEN MALFAIT

Malfait+ 2023 (in prep)

Morphology types: binary systems

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

19

Morphology types: eccentric binaries

 (Progeny of) binary AGB stars with high e (e.g. Oomen+ 2018) Highly asymmetric AGB structures observed (Previous talk by Taissa Danilovich, Decin+ 2020) apastron passage
Varying orbital separation and orbital velocities
-> Phase-dependent wind-companion interaction intensity

PHANTOM

Malfait+ 2023 (in prep) Malfait+ 2021

Morphology types: eccentric binaries

Malfait+ 2023 (in prep) Malfait+ 2021

Morphology types: eccentric binaries

Malfait+ 2023 (in prep) Malfait+ 2021

Morphology types: eccentric binaries

Malfait+ 2023 (in prep) Malfait+ 2021

Morphology types: eccentric binaries

High wind velocity + eccentric: e = 0.5, $v_w = 20$ km/s

Orbital plane

view

AGBstar

Malfait+ 2023 (in prep)

PHANTOM

Morphology types: eccentric binaries

JOLIEN MALFAIT

Malfait+ 2023 (in prep)

Hierarchical triple simulations

Malfait+ 2023 (in prep)

Hierarchical triple simulations

JOLIEN MALFAIT

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

24

Malfait+ 2023 (in prep)

Hierarchical triple simulations

og density [g/cm3]

JOLIEN MALFAIT

Malfait+ 2023 (in prep)

Hierarchical triple simulations

Malfait+ 2023 (in prep)

1000 au -

0 au —

- 1000 au 🗕

Hierarchical triple simulations

 $m_2 = 0.6 M_{sun}$

log density [g/cm3] $v_w = 15 \text{ km/s}$ -16 -16 $e_2 = 0$ 500 au a1 = 5 aua2 = 35 au -18 M_{AGB}= 1.6 M_{sun} -18 $m_1 = 0.4 M_{sun}$ 0 au · -20 Inner snail shell + outer spiral -20 -22 - 500 au Density Density -22 -24 -1000 au 0au 1000 au -500 au 0au 500 au

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

26

JOLIEN MALFAIT

PHANTOM USERS WORKSHOP 13-17/02/2023, MONASH

JOLIEN MALFAIT

Speed up **chemical** simulations in 3D models *Maes+ (in prep.)*

3D chemistry modelling

- Goal: Acceleration of solving chemistry in 3D + coupling to hydro
- Issue: chemical kinetics = solving ODE's --> computationally infeasibly in 3D with complex dynamics
- Way forward: emulate chemical calculations using a neural network (e.g. de Mijola+ 2019, Holdship+ 2021)

surrogate of chemical kinetics model

RT, Simulations - Observations

Leen Decin What are we working on? **KU LEUVER** Radiative transfer + ATOMIUM ALMA observations link observations - simulations 😩 Magritte Jolien Malfait

Sofia Taissa Wallström Danilovich

Ceulemans

Frederik De Ceuster

Mats Esseldeurs

Lionel Siess

ULB

RT, Simulations - Observations

De Ceuster+ (2020a,b; 2022), Ceulemans+ (in prep.), github.com/Magritte-code/Magritte

An open-source software library for 3D radiative transfer, e.g. tailored to Phantom models!

Features

- NLTE line radiative transfer
- **Optimize discretization** for RT (*De Ceuster+ 2020b*)

How it works

- Only uses point cloud with nearest neighbor information (no grid)
- Traces rays and solves RT equation along each ray

Example: R Aquilae

(ALMA observation, Decin+ 2020)

JOLIEN MALFAIT

32

32

De-projecting observations into models

De Ceuster

De Ceuster+ (in prep.), Coenegrachts+ (in prep., previous talk by Taissa), Malfait+ (in prep.)

Forward modeling: from models to (synthetic) spectral line observations

• Difficult to create models that resemble observations, and thus difficult to compare them

JOLIEN MALFAIT

De-projecting observations into models

De Ceuster+ (in prep.), Coenegrachts+ (in prep., previous talk by Taissa), Malfait+ (in prep.)

Forward modeling: from models to (synthetic) spectral line observations

Difficult to create models that resemble observations, and thus difficult to compare them

Inverse (de-projection) modeling: turning (real) spectral line observations into models

Use information encoded in the frequency-dependence to infer the depth-dependence

De Ceuster

Conclusions

Phantom Users Workshop Monash University, Melbourne, Australia Feb 13-17, 2023

jolien.malfait@kuleuven.be

- AGB outflows are complex, impact from wind-companion interactions
- Hydro-models help us understand structure formation in binary and triple systems
- Development of improved AGB-wind model, with chemistry coupling
- Radiative transfer solver Magritte + ALMA simulator + deprojection help to compare simulations & observations
- MCFOST?
- ! Post-doc vacancy on theoretical and hydrodynamic modelling @KU Leuven !

Magritte

github.com/Magritte-code/Magritte

In collaboration with: *Leen Decin Lionel Siess (ULB) Frederik De Ceuster Silke Maes Mats Esseldeurs Thomas Ceulemans*

PHANTON