### Dusty AGB stars Science goals and modeling



#### **Lionel Siess**

Institute of Astronomy and Astrophysics, ULB, Belgium

J. Malfait, M. Esseldeurs, F. De Ceuster, S. Maes, L. Decin (KU Leuven) O. de Marco, L. Bermudez, M. Gonzales-Bolivar (Macquarie)

#### Phantom users workshop

Monash University, Melbourne, Australia Feb 13-17, 2023





1



## AGB stars, dust and binaries

- AGB stars are the site of a unique nucleosynthesis (e.g. fluorine, s-elements) that make them easy to identify spectroscopically
- Strong producers of dust which is the driver of strong winds
- The presence of a mass loosing AGB star in a binary can
  - Strongly impact of the morphology of the circumstellar environment
  - Affect our estimates of the mass loss rate
  - induce mass exchange leading to
    - (dusty) common envelope evolution for short P system
    - Formation of chemically peculiar stars (Ba stars, CEMP, ...) with **puzzling orbital parameters**

AGB stars in binaries are excellent laboratories to study binary interactions but a consistent modeling of wind ejection and dust is required



# PHANTOM

### Effect of dust on the hydro equations

Dust is opaque and can absorb radiation which translates into

• radiation force 
$$\frac{d\mathbf{v}}{dt} = -\frac{\nabla P}{\rho} + \Pi_{\text{shock}} + \mathbf{a}_{\text{sink-gas}} + \mathbf{F}_{\text{rad}}$$

$$a_{\text{sink-gas}} + F_{\text{rad}} = -\frac{GM_{\text{sink}}}{r^2} (1 - \mathbf{D}) \qquad \Gamma = \frac{(\kappa_{\text{g}} + \kappa_{\text{dust}})L_*}{4\pi c GM} e^{-\tau}$$

• extra heating/cooling because T<sub>dust</sub> ≠ T<sub>gas</sub>

$$rac{du}{dt} = -rac{P}{
ho}(
abla \cdot \mathbf{v}) + \Lambda_{
m shock} - rac{\Lambda_{
m cool}}{
ho}$$

• Approximate solutions require calculation of optical depth

• **drift** terms

Determination of T<sub>dust</sub>

gas-dust heat exchange

 $\Lambda_{\rm cool} = \frac{3R}{2\mu} \frac{(T_{\rm gas} - T_{\rm dust})}{C'} + \Lambda_{\rm HI}$ 

optical depth  $\tau = \int_{R}^{r} \kappa \rho \, dr$ 

 $T_{\rm dust}^4 = \frac{1}{2} \left( 1 - \sqrt{1 - \left(\frac{R_*}{r}\right)^2} \right) T_*^4 e^{-\tau}$ 

• RT codes e.g. MCFOST



### Implementation of mass loss

1. Given an injection radius, wind temperature and mass loss rate we calculate the *steady 1D wind profile* 

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{2c_{\mathrm{s}}^2/r - GM_*(1-\Gamma)/r^2 - (\gamma-1)\Lambda/v}{v(1-c_{\mathrm{s}}^2/v^2)}$$
$$\frac{\mathrm{d}T_{\mathrm{g}}}{\mathrm{d}r} = (1-\gamma)T_{\mathrm{g}}\left(\frac{2}{r} + \frac{1}{v}\frac{\mathrm{d}v}{\mathrm{d}r}\right) + \frac{(\gamma-1)\mu m_{\mathrm{u}}}{k}\frac{\Lambda}{v}$$

- 2. When particles are released, they are assigned the properties of the 1D wind solution (v, u)
- **3**. The ejected particles are distributed on an isocahedron surface
  - The number of particles N is quantisized
  - Spheres are rotated between injections to remove artifacts







A two step process

### 

#### **1. Nucleus formation**

- Process operates at the molecular scale
- seeds contain 100 to 1000 atoms
- To compute the nucleation rate, we need abundances of *monomers* (dust building blocks)
- → chemical network including 7 atoms : H, C, O, N, Si, S, Ti and 25 molecules ( $C_2$ ,  $H_2$ , OH,  $H_2O$ , CO, CO<sub>2</sub>, CH<sub>4</sub>,  $C_2H$ ,  $C_2H_2$ , TiO, SiO ....)

 $\rightarrow$  we assume chemical equilibrium : no need to store individual abundances, only that of atomic carbon

#### 2. Grain growth

- Gas molecules stick to the grain surface and make it grow
- The growth proceeds via





### Dust evolution : Moment equations

This theory does not calculate the grain size distribution f(N, t) but uses its moments  $\mathcal{K}_i$  to describe the global dust properties:

- Average grain radius  $\langle a \rangle \propto \mathcal{K}_1 / \mathcal{K}_0$
- Average grain surface  $\langle S \rangle \propto \mathcal{K}_2 / \mathcal{K}_0$
- Number monomers condensed in grains  $\mathcal{K}_3 \propto \text{opacity}$

$$\mathcal{K}_i = \sum_{N=N_l}^{\infty} N^{i/3} f(N, t)$$

N is the number of monomers in the grain

The evolution of the moments is given by

$$\frac{\mathrm{d}\widehat{J_*}}{\mathrm{d}t} = \frac{\widehat{J_*}^s - \widehat{J_*}}{\tau_*}$$
$$\frac{\mathrm{d}\widehat{\mathcal{K}}_0}{\mathrm{d}t} = \widehat{J_*}$$
$$\frac{\mathrm{d}\widehat{\mathcal{K}}_i}{\mathrm{d}t} = \frac{i\widehat{\mathcal{K}}_{i-1}}{3\tau} + N_l^{i/3}\widehat{J_*},$$

 $J_*$  : nucleation rate  $f(T,P_i)$ 

au -1 : rate of growth/destruction of the grains

- $J_{*^{s}}$  : rate of formation of critical clusters
- $\tau_*$  : relaxation time to equilibrium

Each SPH particle now carries the information about the moments  $\mathcal{K}_i$  and  $J_*$ 











8



Dust forms in the expanding common evolution

Could have a significant impact on the observables

(Bolivar+ 2023, Bermudez+ 2023, in prep)

See Miguel's talk to follow



Bermudez+ (2023)



### Ray tracer implementation

Algorithm adapted from the Dogritte code (de Ceuster)

- 1. A series of rays are emitted and evenly distributed on a sphere (HEALPix). Number of rays =  $12 \times 4^{\text{order}}$
- 2. For each ray, do outward integration :
  - 1. Start from a point  $P_i$
  - 2. Take all the nearest neighbors in the sphere of influence
  - 3. Find the particle closest to the ray  $\rightarrow P_{i+1}$
  - 4. Calculate the optical depth increment  $d\tau_i = \langle \kappa \rho \rangle ds_i$  along the segment  $ds_i = P_i P_{i+1}$  using all *part*.  $\in R_{kern}$
- 3. For each particle, find the closest rays (HEALPix) and do the inward optical depth integration, averaging the  $d\tau_i$  contribution from the closest 4 rays





### Preliminary results

#### Effective wind launching



Shadow cone generated



- Radiative transfer coupling with MCFOST (started). Aim is to recover grain size distribution from moments so MCFOST can estimate  $T_{dust}$ , optical depth ( $\tau$ ), radiation force ( $\Gamma$ )
- Cooling test numerical scheme + implement more accurate prescriptions (CO, H<sub>2</sub>O line cooling, ...)
- Pulsations improve wind launching mechanism. May need to solve the energy transport in the STAR
- Chemistry
  - Adapt dust formation to C-poor stars (C/O<1)
  - Chemistry in AGB outflows is complex --> chemical network emulator to get cooling rates and molecular abundances (Jolien's talk)
- Dust-gas coupling

#### With the goals to better understand

- ALMA observations, mass loss rates, binary interactions with an AGB primary
- Common envelope evolution and its optical counterpart (transients) ...
- Try it ! writemake.sh wind > Makefile