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Common envelope evolution on the asymptotic giant branch: unbinding
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ABSTRACT

Commeon envelope (CE) evolution is a critical but still poorly understood progenitor phase
of many high-energy astrophysical phenomena. Although 3D global hydrodynamic CE
simulations have become more common in recent years, those involving an asymptotic giant
branch (AGB) primary are scarce. due to the high computational cost from the larger dynamical
range compared to red giant branch (RGB) primaries. But CE evolution with AGRE progenitors
is desirable to simulate because such events are the likely progenitors of most bi-polar planetary
nebulae (PNe). and prominent observational testing grounds for CE physics. Here we present
a high-resolution global simulation of CE evolution involving an AGB primary and 1-M
secondary, evolved for 20 orbital revolutions. During the last 16 of these orbits, the envelope
unbinds at an almost constant rate of about 0.1-0.2 M yr™'. If this rale were maintained,
the envelope would be unbound in less than 10 yr. The dominant source of this unbinding is
consistent with inspiral: we assess the influence of the ambient medium 1o be subdominant.
We compare this run with a previous run that used an RGB phase primary evolved from the
same 2-M

When scaled appropriately. the two runs are quite similar, but with some important differences.

main-sequence star (o assess the influence of the evolutionary state of the primary

Key words: hydrodynamics—stars: AGB and post-AGB — binaries: close — stars: Kinematics
and dynamics — stars: mass-loss —stars: winds, outflows.
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Abstract. Common envelope evolution (CEE) oceurs in some binary systems involving asymp-
totic giant branch (AGB) or red giant branch (RGB) stars, and understanding this process is
crucial for understanding the origins of various transient phenomena. CEE has been shown to he
highly asymmetrical and global 3D simulations are needed to help understand the dynamics. We
perform and analyze hydrodynamic CEE simulations with the adaptive mesh refinement {AMR)
code AstroBEAR, and focus on the role of accretion onto the companion star. We bracket the
range of accretion rates by comparing a model that removes mass and pressure using a sub-
grid accretion preseription with one that does not. Provided a pressure-release valve. such as
a bipolar jet, is available, super-Eddington accretion could be common. Finally, we summarize
new results pertaining to the energy budget, and discuss the overall implications relating to the
feasibility of unbinding the envelope in CEE simulations.
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ABSTRACT

Commuon-envelope phases are decisive for the evolution of many binary systems. Cases with asymptotic giant branch (AGB) primary
stars are of particular interest because they are thought to be progenitors of various astrophysical wansients. In three-dimensional
hydrodynamic simulations with the moving-mesh code AREPO, we study the common-envelope evolution of a 1.0 M., early-AGB star
with companions of different masses. Although the stellar envelope of an AGB star is less tightly bound than that of a red giant, we
find that the release of orbital energy of the core binary is insufficient to eject more than about twenty percent of the envelope mass.
lonization energy that is released in the expanding envelope, however, can lead to complete envelope ¢jection. Because recombination
proceeds largely at high optical depths in our simulations, it is likely that this effect indeed plays a significant role in the considered
systems. The efficiency of mass loss and the final orbital separation of the core binary system depend on the mass ratio between the
companion and the primary star. Our resulis suggest a linear relation between the ratio of final to initial orbital separation and this
parameter.
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ABSTRACT

We present 2D hydrodynamical simulations of the transition of a protoplanetary nebula (PPN) to a planctary nebula for central
stars in binary systems that have undergone a common-¢nvelope event. After 1000 yr of magnetically driven dynamics (PPN
phase), a line-driven stellar wind is introduced into the computational domain and the expansion of the nebula is simulated for
another 10000 yr, including the effects of stellar photoionization. In this study we consider central stars with main sequence
(final) masses of 1 (0.569) and 2.5 (0.677) M., together with a 0.6-M ., main-sequence companion. Extremely bipolar, narrow-
waisted PPNe result in bipolar planetary nebulae, while the rest of the shapes mainly evolve into elliptical planetary nebulae. The
initial magnetic neld’s effects on the collimated structures, such as jets, tend to disappear in most of the cases. leaving behind
the remnants of those features in only a few cases. Equatorial zones fragmented mainly by photoionization { [-M, progenitors ),
result in “necklace’ structures made of cometary clumps aligned with the radiation field. On the other hand. fragmentation by
photoionization and shocked wind (2.5-Mg, progenitors) give rise to the formation of multiple clumps in the latitudinal direction,
which remain within the lobes. close to the center. which are immersed and surrounded by hot shocked gas. not necessarily aligned
with the radiation field. These results reveal that the fragmentation process has a dependence on the stellar-mass progenitor. This
fragmentation is made possible by the distribution of gas in the previous post-common-envelope PPN as sculpted by the action
of the jets.

stars: rotation.

Key words: stars: AGB and post-AGB — stars: evolution
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RGB vs AGB as donor star in CE
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RGB vs AGB as donor star in CE
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RGB vs AGB as donor star in CE
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hermally pulsating AGB star
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Spoiler alert: it does in simulations
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-hi star (old relax technique)
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M-hi star (relax-o-matic)
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After mapping

ol After relaxation
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eah, yeah right, just put the movie already! (I-hi)
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e Higher resolutions decreases final
separation, contrary to CE with RGB's
(Reichardt+ 2019)

e Any additional energy source
(recombination, radiation pressure)
increases final separation

e Recombination energy unbinds almost
(all?) envelope
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Xt step....dust

We implemented the Bowen prescription Kmax
(Bowen, 1956) K'/D — T'—Tcond
for dust-driven winds (DDW) in these CE's 1 + e T
dv A\ KJDL

== | ex at sink—gas
dt o, Gext (T, 1) + Gsink Aric
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Xt step....dust

We implemented the Bowen prescription Kmax
(Bowen, 1956) K'/D — T'—Tcond
for dust-driven winds (DDW) in these CE's 1 + e T
dv VP (r.) + -~ kpL
= - Qext\T Agink—gas/ ™
dt 0 AT - Amtr2e

Dust-driven wind term



e \We implemented DDW in the 2Msun models with ideal and
MESA EoS.

e \We also model a 4Msun primary until TP-AGB to check the
effect on higher stars.
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e Virtually no difference in orbital
evolution
. e Almost all interaction is
e —— dynamically driven (low mass ratio)
— e DDW still unbinds significantly
fraction of envelope

Orbital separation |Rg
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time |yr
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Bowen (kmax = 5 cm?/g)

(Gonzalez-Bolivar+ 2023, in
olgsle)

Bowen (kmax = 15 cm?/g)

Nucleation (Bermudez-Bustamante+ 2023, in prep)



[/

al

2 Msun MESA
(recomb)

o
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D Muyp.ave (Bowen)

— Y Muguye (No dust)

e For simulations with recombination
energy, DDW effects are less noticeable.

e \\inds are particularly strong during
ROLF phase.
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e DDW unbounds more gas in all simulations, at the cost of larger
al separation values.
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mplement of this analysis






