New-born neutron stars colliding with companion stars

"Ryo"suke Hirai

Monash University

<u>Collaborators</u> Philipp Podsiadlowski (Oxford)

Phantom users workshop 2023 @ Monash 15/02/2023

Massive binaries are important

Most massive stars have 1 or more companions!

Supernovae in binaries

Stripped-envelope SNe (Z = 0.0055)

Companion detections

Neutron star natal kicks

New-born neutron stars receive "kicks" due to the asymmetry in the explosion Asymmetries may be caused by:

- Hydrodynamical stochasticity
- Neutrino emission

What happens when neutron stars are kicked *into* the companion star?

HORMONE

(High ORder Magnetohydrodynamic cOde with Numerous Enhancements)

- 3D MHD code
- Finite volume scheme (Godunov-type)
- HLLD fluxes + 9-wave method
- openMP parallel
- Cartesian/Cylindrical/Spherical coordinates
- Hyperbolic self-gravity (~O(N), Hirai et al. 2016)
- Optically thin radiative cooling (Townsend 2009)
- Customized flux limiter
- Original EoS solver for recombination (Hirai et al. 2020)
- Working on AMR and RT...

Hydrodynamical simulations

I performed 3D hydro simulations of collisions between new-born NSs and companions

0.00 hr

Immediate merger

Envelope penetration

0.00 hr

Results – deceleration in the envelope

- On completely ballistic trajectories, the ingoing and outgoing curves should exactly agree
- As the NS enters the stellar envelope, the gravitational drag causes the NS to decelerate
- The deceleration is sometimes large enough to put the NS on a bound orbit

Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling

Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling

Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling

Probabilities of each outcome

Thorne-Zytkow objects

Hypervelocity stars

Possible applications

Pulsar planets

Peculiar supernovae

New upper limit for hypervelocity stars

Origin of pulsar planets

The first exoplanets were discovered around pulsars

>10 pulsar planets discovered so far Some pulsars even have proto-planetary disks

Origin scenarios

- 1. Dynamical capture Steal planets from other stars in dense clusters
- 2. Evaporated companion Evaporate the companion star via pulsar winds

3. NS-WD merger

Tidally disrupt a WD to create proto-planetary disks

4. Matter capture from companion

Accrete matter from companion to create proto-planetary disk

Captured mass by the neutron star

The NS captured 1-10M_J of mass from the companion in our simulations

Mass and angular momentum captured by the NS is sufficient for pulsar planet formation

PSR B1257+12/

lercury orbit

Example

Bumpy superluminous supernovae?

Recently, some stripped-envelope superluminous SNe are showing very bumpy light curves

For our bound+penetration models, the NS can interact with the companion multiple times Each time, the NS can take away some matter and accrete it to power the light curve from inside

Summary

- Stripped-envelope supernovae can have non-zero chances for the NS being kicked into the companion
- When the kick is strong enough, the NS can sometimes penetrate through the companion's envelope, taking away some matter at the same time
- Envelope penetration could explain the origin of the following phenomena
 - Thorne-Żytkow objects
 - Hypervelocity stars
 - Pulsar planets
 - Peculiar supernovae (bumpy SESN)

Phantom is definitely more suitable for this Anyone want to follow up?

