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Multiplicity & Triple/High-order Fractions (%)

Massive binaries are important

Most massive stars have 1 or more companions!
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Supernovae in binaries

Many core-collapse supernovae are expected
to occur with a companion star close-by
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Neutron star natal kicks

New-born neutron stars receive “kicks” due
to the asymmetry in the explosion
Asymmetries may be caused by:

* Hydrodynamical stochasticity

* Neutrino emission
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What happens when neutron stars are kicked into the companion star?



HORMONE

(High ORder Magnetohydrodynamic cOde with Numerous Enhancements)

* 3D MHD code

* Finite volume scheme (Godunov-type)

« HLLD fluxes + 9-wave method

» openMP parallel

* Cartesian/Cylindrical/Spherical coordinates

« Hyperbolic self-gravity (~O(N), Hirai et al. 2016)
 Optically thin radiative cooling (Townsend 2009)
 Customized flux limiter S~
» Original EoS solver for recombination (Hirai et al. 2020) w=p
» Working on AMR and RT...




Hydrodynamical simulations

| performed 3D hydro simulations of collisions between new-born NSs and companions

0.00 hr 0.00 hr

Model parameters

* Progenitor mass : 6 Mg

* NS mass: 14 Mg

« Companion mass : 1,5,10 Mg
 Orbital separation : 3,8,15 Ry
 Kick velocity : 1000 km/s

« Kick direction : various

Similar setup to:

o Stellar flybys

 Tidal disruption events
« Common-envelopes

Immediate merger Envelope penetration



Results — deceleration in the envelope
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On completely ballistic
trajectories, the ingoing and
outgoing curves should exactly
agree

As the NS enters the stellar
envelope, the gravitational drag
causes the NS to decelerate

The deceleration is sometimes
large enough to put the NS on a
bound orbit



Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling
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Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling
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Semi-analytical modelling

We create a new analytical model for gravitational drag to enable more rapid modelling

Both the magnitude and direction of
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Classifying the outcomes

We classify the outcomes into 5 different groups
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Probabilities of each outcome
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companion, there is a £50%
chance for the NS to penetrate

the envelope at least once velocities
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Unbound penetrations can
occur even at moderate kick
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Peculiar supernovae
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>10 pulsar planets

f pulsar planets
were discovered around pulsars

scovered so far

Some pulsars even have proto- planetary disks:

Or|q|n scenarios

1.

Dynamical capture
Steal planets from other stars in dense clusters

Evaporated companion .
Evaporate'the companion star via pulsar winds

NS-WD merger
Tidally disrupt a WD to create

O-planetary disks

Matter capture,from c

Accrete matter from. hanion to create proto-planetary disk
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Bumpy superIUmmo

Recently, some stripped- envelope Su

?s\ supernovae?

inous SNe are shoyymg very bumpy light curves
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For our bound+penetration models, the NS can intéfact with the.companion multiple times

Each time, the NS can take away some matter and accrete it to power the light curve from
inside



Summary

» Stripped-envelope supernovae can have
non-zero chances for the NS being kicked ; o
into the companion Phantom is definitely more

suitable for this

* When the kick is strong enough, the NS can Anyone want to fO||0W up7

sometimes penetrate through the
companion’s envelope, taking away some IT“Ei_iliiﬁﬁiii_,i’if_i,i;{.iiifi
matter at the same tlme Immediate merger s

* Envelope penetration could explain the
origin of the following phenomena
* Thorne
« Hypervelocity stars
 Pulsar planets

 Peculiar supernovae (bumpy SESN) Kick volocity (an s=1)



