

The Role of Drag and Gravity on Dust Concentration in a GRAVITATIONALLY UNSTABLE DISC

Sahl Rowther, Rebecca Nealon, Farzana Meru, James Wurster, Hossam Aly, Richard Alexander, and Ken Rice

🕮 sahl95.github.io Sahl.rowther@leicester.ac.uk

Science and Technology **Facilities Council**

When are Discs Gravitationally Unstable?

- In their youth, discs can be massive enough that the disc's self-gravity is important.
- When the disc mass is comparable to its host star ($\geq 10\% M_{\star}$), gravitational instabilities (GI) can occur resulting in spiral arms.

Introduction — GI Discs

When are Discs Gravitationally Unstable?

ALMA Observations

Observed substructures

- Rings & gaps (axisymmetric) are very common.
- Spiral (nonaxisymmetric) features are rare.

Sahl Rowther

HT Lup	GW Lup	IM Lup	RU Lup
Sz 114	Sz 129	MY Lup	HD 142666
HD 143006	AS 205	SR 4	Elias 20
DoAr 25	Elias 24	Elias 27	DoAr 33
WSB 52	WaOph 6	AS 209	HD 163296

Andrews+ 2018

Introduction — Recent Observations

4

ALMA Observations

Observed substructures

- Rings & gaps (axisymmetric) are very common.
- Spiral (nonaxisymmetric) features are rare.

Sahl Rowther

HT Lup	GW Lup	IM Lup	RU Lup
• <u> </u>	• –		• –
Sz 114	Sz 129	MY Lup	HD 142666
	• -	• —	• –
HD 143006	AS 205	SR 4	Elias 20
DoAr 25	Elias 24	Elias 27	DoAr 33
WSB 52	WaOph 6	A5 209	HD 163296

Andrews+ 2018

Introduction — Recent Observations

4

Planet-Disc Interactions

- The planet and disc exert a force on each other.
- The exchange of angular momentum between the planet and the disc can lead to migration of the planet.
- If the planet is massive enough, it can carve open a gap in the disc.

Sahl Rowther

Introduction — Planet-Disc Interactions

Substructures in the Gas

An embedded planet can leave its imprint in the disc kinematics. This is seen here by a kink at the planet's location.

Sahl Rowther

Introduction — Substructures in the Gas

Substructures in the Gas

An embedded planet can leave its imprint in the disc kinematics. This is seen here by a kink at the planet's location.

Sahl Rowther

Introduction — Substructures in the Gas

Planets Inferred from Disc Sub-Structures & Kinematics

Sahl Rowther

Introduction — Inferred Planets

Ages of Discs

van der Marel+ 2019

Sahl Rowther

Introductic

Core Accretion Timescale

- Forming planets takes a long time.
- Issue becomes worse the further out the planet is located.

Sahl Rowther

Introduction — The Issue of Time

Pollack+ 1996

The Drag Force

Stopping Time

Stokes Number

Sahl Rowther

Introduction — Important Equations of Dust Dynamics

Radial Drift

- Maximum for St = 1 (grain sizes from cm to m).
- Drives particles towards regions of highest pressure.
- In a smooth disc, motion is inwards as pressure declines smoothly.

Sahl Rowther

Introduction — Radial Drift of Dust

Velocity Dispersion ofDust

- And will be compared to the gas sound speed. If $c_d = c_g$, the dust is very well coupled to the gas.

$$c_{d,i}^{2} = \sum_{j=1}^{N_{\text{neigh}}} m_{j} \frac{(v_{d,i} - v_{d,j})^{2}}{\rho_{d,j}} W_{ij}(h_{i})$$

Sahl Rowther

• Will be used to measure how gravitationally unstable (Toomre Q) the dust becomes.

Introduction — Velocity Dispersion

Past Studies of Dusty GI Discs

- Global 3D simulations (Rice+ 2004, 2006)
- Global 2D simulations with test particles (Booth & Clarke 2016)

Sahl Rowther

Introduction — Past Global Simulations

13

Past Studies of Dusty GI Discs

- 2D shearing box simulations (Gibbons+ 2012, 2014, Shi+ 2016)
- 3D shearing box simulations (Baehr & Zhu 2021a,b, Baehr+ 2022)

Sahl Rowther

Baehr & Zhu 2021a

Introduction — Past Local Simulations

14

Current Studies

SEE CRISTIANO'S TALK ON THURSDAY!

WHAT DRIVES THE DUST DYNAMICS?

THE DRAG FORCE OR GRAUTY?

Rowther+ (in prep)

Sahl Rowther

Evolving a $0.2M_{\odot}$ gas only disc until spiral structures have formed

Method — Setting up the gas disc

Rowther+ (in prep)

Sahl Rowther

Add 50cm (St ~ 4) sized dust grains

Initial dust-to-gas mass ratio = 0.01

Method — Adding the dust

Sahl Rowther

Adding Dust

Dust

Method — Adding the dust

Evolution of 50cm (St ~ 4) sized dust grains

- Dust drifts towards the gas spirals.
- Dust disc becomes gravitationally unstable forming bound clumps.

Sahl Rowther

Results — Evolution of 50cm sized grains

Rowther+ (in prep)

Radial Drift

- Spirals due to gravitational instabilities are regions of pressure maxima.
- Dust drifts towards spirals rather than primarily inwards

Rowther+ (in prep)

Radial Velocity of Dust

Why does the dust form clumps?

Rowther+ (in prep)

Sahl Rowther

Toomre Stability Parameter

$$Q = \frac{c_s \Omega}{\pi G \Sigma}$$

Results — Analysis of Toomre Q

Why does the dust form clumps?

Sahl Rowther

Toomre Stability Parameter

$$Q = \frac{c_s \Omega}{\pi G \Sigma}$$

Results — Analysis of Toomre Q

Why does the dust form clumps?

Sahl Rowther

Toomre Stability Parameter

$$Q = \frac{c_s \Omega}{\pi G \Sigma}$$

Results — Analysis of Toomre Q

Why does the dust form clumps?

Sahl Rowther

Toomre Stability Parameter

 $Q = \frac{c_s \Omega}{\pi G \Sigma}$

Results — Analysis of Toomre Q

23

Different Dust Sizes

Rowther+ (in prep)

Sahl Rowther

Results — Dust Dynamics of Different Sized Grains

24

Sahl Rowther

Results — Dust Dynamics of Different Sized Grains

Dust forms bound clumps

Sahl Rowther

Results — Dust Dynamics of Different Sized Grains

Dust spirals well coupled to gas

Sahl Rowther

Results — Dust Dynamics of Different Sized Grains

Dust decoupling from gas

Sahl Rowther

Results — Dust Dynamics of Different Sized Grains

Dust fully decouples from gas

DRAG FORCE IS IMPORTANT, EVEN FOR LARGE (St > 1) GRAINS

How Important is Gravity? Is the Coupling Purely Due to Drag?

Modifying the Physics

1. Full Physics 2. No Dust Self-Gravity 3. Drag Only 4. Gravity Only

Forces Acting on the Dust Full Physics

Sahl Rowther

Modifying Physics

Forces Acting on the Dust No Dust Self-Gravity

Sahl Rowther

Modifying Physics

Forces Acting on the Dust Drag Only

Sahl Rowther

Modifying Physics

34

Forces Acting on the Dust Gravity Only

Sahl Rowther

Methods — Modifying Physics

Full Physics

Sahl Rowther

Results — Dust Dynamics After Modifying Physics

Rowther+ (in prep)

No Dust Self-Gravity

Sahl Rowther

Results — Dust Dynamics After Modifying Physics

Rowther+ (in prep)

37

Sahl Rowther

1.0

Rowther+ (in prep)

Gravity Only

Sahl Rowther

Results — Dust Dynamics After Modifying Physics

Both Gravity and Drag are Necessary for Large Grains to Couple to the Gas

Total Mass in Clumps

- Clump finding algorithm (Wurster & Bonnell, in prep)
- Clumps are formed very quickly.
- Until 40% of the dust disc is in clumps.

Rowther+ (in prep)

Results — Clump Analysis

Impact of Physics on Clump Masses

- Loss of gravity results in clumps falling apart into smaller clumps.
- Loss of drag results in clumps falling apart almost as fast as they initially formed.

Sahl Rowther

Results — Clump Analysis

42

Implications on Planet Formation

- Clumps can form extremely rapidly.
- Clump masses can reach the threshold at which runaway accretion can occur.
- Dust does not primarily drift inward, potentially prolonging the dust disc's lifetime.

/.

Conclusions

- The gas spirals are able to efficiently trap dust.
- For Stokes numbers near unity, the dust can become gravitationally unstable forming bound clumps.
- These clumps are mostly in the $1-3M_\oplus$ range, but a few are bigger than $10M_{\oplus}$.
- Both drag and gravity are necessary to trap dust in the gas spirals.

44