GROWTH OF POROUS AGGREGATES IN PROTOPLANETARY DISCS USING SPH SIMULATIONS

Phantom users workshop February 16, 2023

Stéphane Michoulier

Supervisor: Jean-François Gonzalez

Université Claude Bernard

PHANTOM

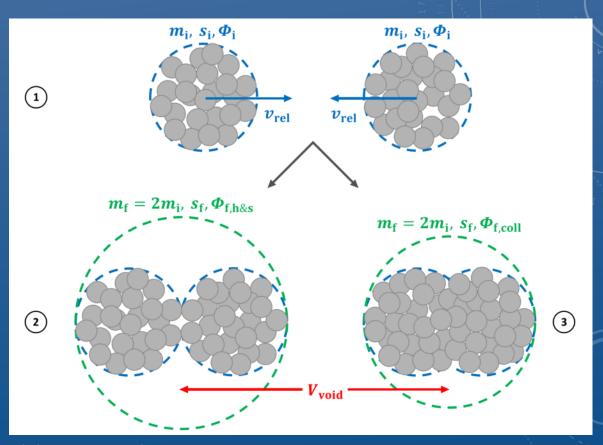
yon 1

MOTIVATIONS

- According to observations, planet formation is fast and efficient.
- Theoretical formation of planetesimals is too slow.
- Several problems prevent dust growth.
- Multiple solutions have been proposed:
 - Dust traps, vortices, instabilities, etc.
 - Dust porosity.
- Why porosity is important ?
 - Comets and asteroids are porous.
 - Grain growth is faster with porous grains.
 - May explain planetesimal formation/observations

INTRODUCTION TO POROSITY

• Mass is computed using the formula:


 $m = \frac{4\pi}{3} s^3 \rho_{\rm s} \Phi$

• Φ is the filling factor:

• Growth rate (mono-disperse approx.):

 $\left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)_{\mathrm{g}} = 4\pi\rho_{\mathrm{d}}s^{2}\upsilon_{\mathrm{rel}}$

Mass is the natural variable to treat dust growth. Stepinski & Valageas (1996,1997)

(1): 2 grains of mass m_i collide with a relative velocity v_{rel} . (2): In the " hit & stick ", grains simply stick together. (3): Higher v_{rel} collision leads to internal restructuring.

Credits: Michoulier

Credits: Michoulier

INTRODUCTION TO POROSITY: FRAGMENTATION

 $\int \frac{1}{v_{rel}} \frac{1}{v_{rel}} \frac{1}{v_{rel}}$

 m_i, s_i, Φ_i

(1): 2 grains of mass $m_{\rm i}$ collide with a high relative velocity $v_{\rm rel}$ (2): If fragmentation occurs, the new grain is called the remnant.

 m_i, s_i, Φ_i

(1)

(2)

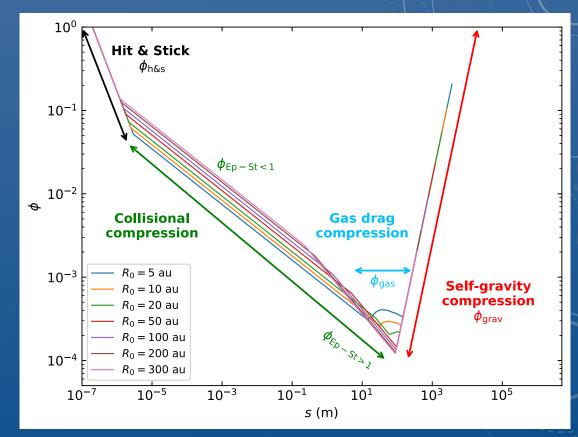
If $v_{rel} < v_{frag} \rightarrow \text{growth}$ If $v_{rel} \ge v_{frag} \rightarrow \text{fragmentation}$

``Smooth fragmentation model'' $\left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)_{\mathrm{f}} = -\frac{v_{\mathrm{rel}}^2}{v_{\mathrm{rel}}^2 + v_{\mathrm{frag}}^2} \left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)_{\mathrm{g}}$

Kobayashi & Tanaka (2010), Garcia (2018)

Credits: Michoulier

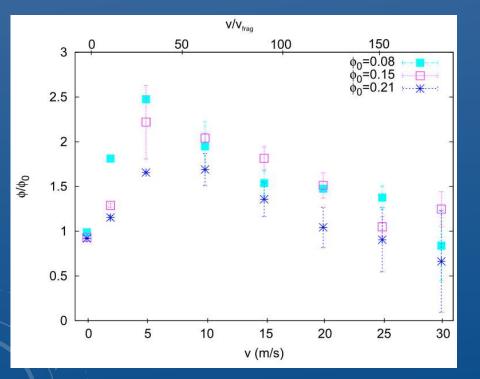
POROSITY EVOLUTION MODEL

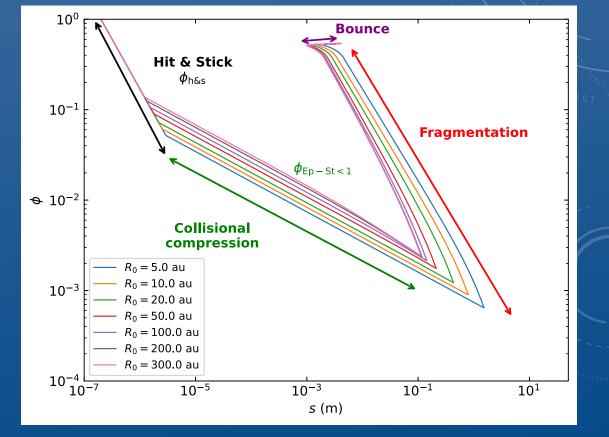

The porosity evolution model handles many physical processes:

- Growth
- Bounce
- Fragmentation (+ compaction)
- Disruption

As few as possible new parameters (heavy work on modelling bounce and compaction):

- Monomer size
- Young modulus
- Surface energy
- Force-to-torque efficiency

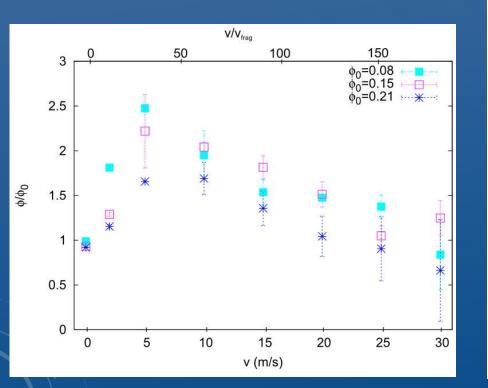


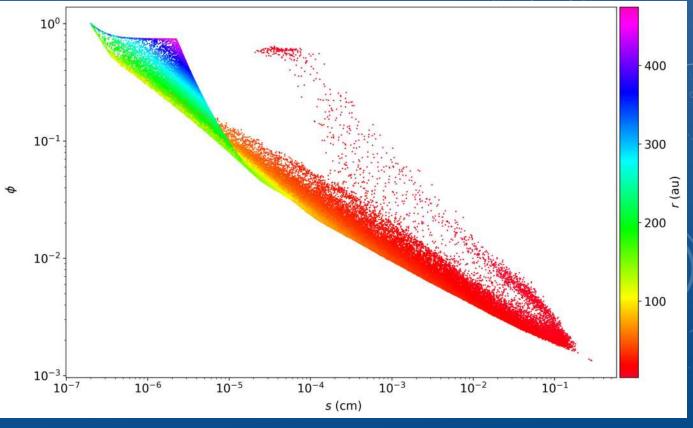


Expansion/compression regimes during grain growth.

COMPACTION OF AGGREGATES

Fragmentation can compacted grains very efficiently. \rightarrow Can reconcile ϕ deduced by observations from polarization (Kataoka et al. 2016; Tazaki et al. 2019, 2022), comets (Güttler et al. 2019) and theory.

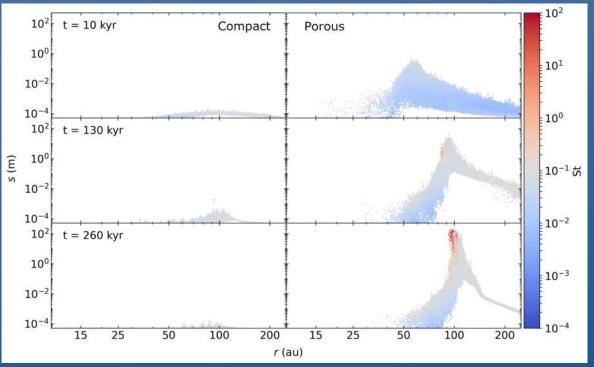



Ringl & Brinda (2012)

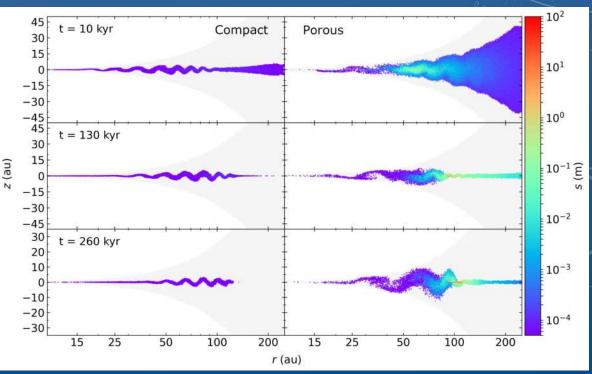
5

COMPACTION OF AGGREGATES

Fragmentation can compacted grains very efficiently. \rightarrow Can reconcile ϕ deduced by observations from polarization (Kataoka et al. 2016; Tazaki et al. 2019, 2022), comets (Güttler et al. 2019) and theory.



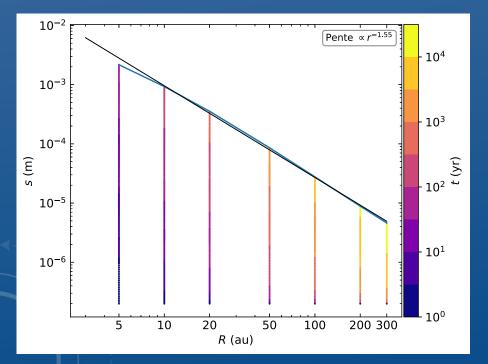
Ringl & Brinda (2012)

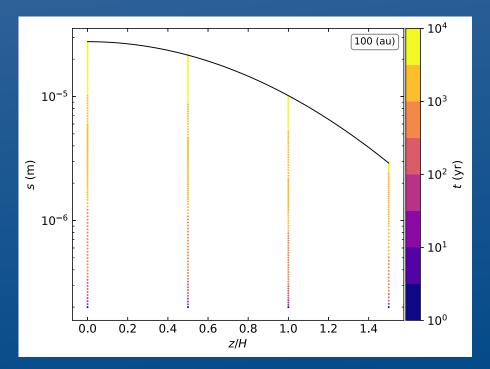

6

SOME OLD RESULTS... WITH PROBLEMS

- Porous grains are more coupled at the beginning, but totally decouple from the gas near 100 au.
- Aggregates are able to quickly form cm-sized object, and some can grow as large as 100 m.
- A self induced dust trap (Gonzalez et al. 2015) is formed at 100 au, holding the dust in the disc.

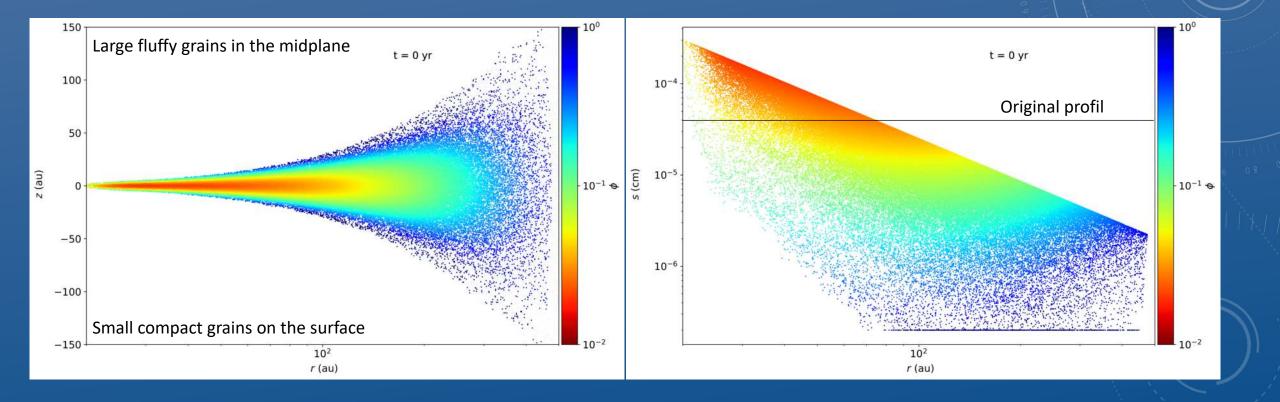
- The disc of compact grains is much thinner and settled.
- The most porous aggregates, and thus the larger ones, are close to the midplane.
- The disc of porous dust is not settled in the inner region (baroclinic instability?) due to turbulence and fragmentation, which maintain dust size so that St~1.


1) DEALING WITH SMALL STOPPING TIMES (FRAGMENTATION)


- Current problem when simulating dust growth:
 - Small grains for initial condition: $s \sim 10 50 \mu m$.
 - Dust porosity lower St by 1-2 order of mag.
 - Dust growth with porosity is very fast (2 fluid needed).
 - Current method impose a minimum grain size.
- We need a method relying on both size and filling factor:
 - New method for porosity impose a minimum St.

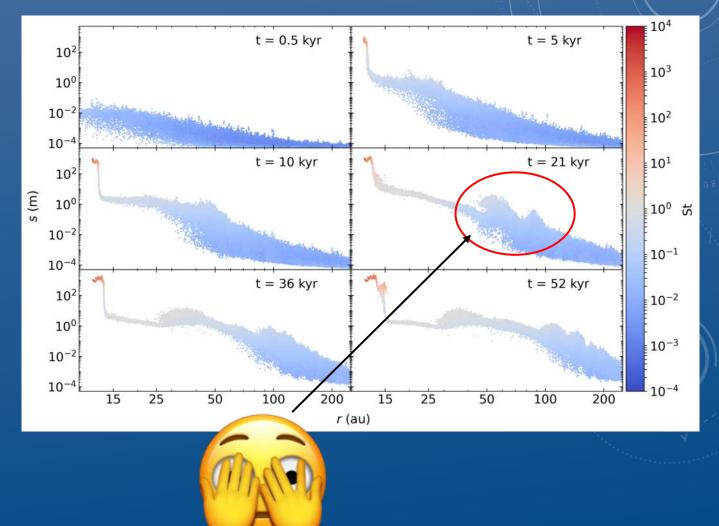
Epstein drag regime St_{Ep} = $\frac{\rho_s \phi s}{\rho c_g}$

2) INITIAL CONDITIONS FOR SIMULATIONS


- Current method: all grains start with the same size!
 - Lebreuilly et al. (2020), Bate (2022) shows grain growth during cloud collapse.
 - Porosity depends on location in the disc -> identical grains in the midplane and on the surface not realistic.
- At early stage, grain size can be approximate by a power law \propto radius for a given St.
- Grain growth scales with scale height.

Credits: Michoulier

2) INITIAL CONDITIONS FOR SIMULATIONS

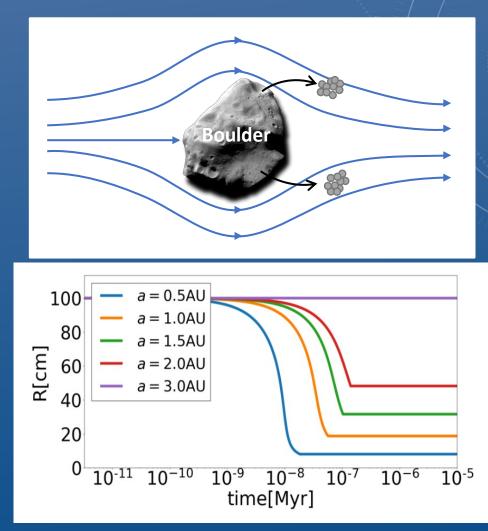


Credits: Michoulier

10

3) SIMULATIONS WITHOUT ARTEFACTS

- Disc relaxation cause problems with grain growth and porosity (anomalous growth).
- Current method in phantom:
 - Start with gas and dust (2 fluids), and set the outer dust radius to 5/6 of the gas one.
 Véricel et al. (2021)
- New (old fashion) method:
 - First run disc without dust to remove relaxation artefacts.
 - add dust in 2 fluids with a growth profile.


Credits: Michoulier

EROSION

- Add another new physical effect to dust growth: aeolian-erosion.
- Erosion modelled as a mass lose rate:

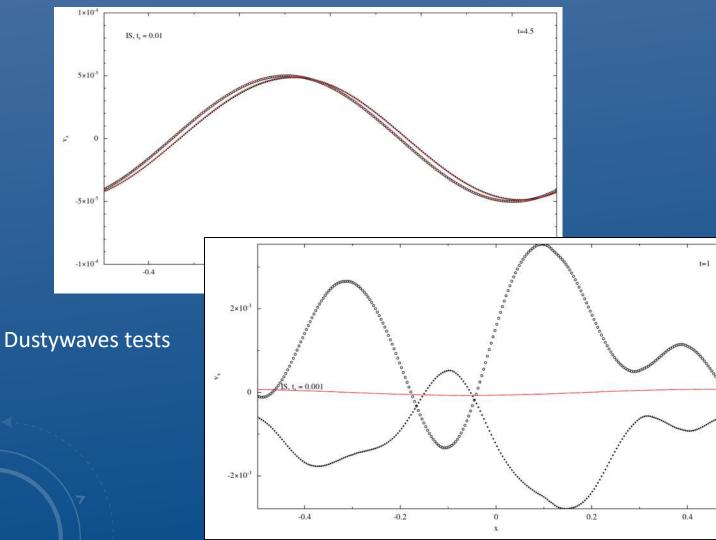
•
$$\left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)_{\mathrm{ero}} = -\rho_{\mathrm{g}} \,\Delta v^3 \frac{m_{\mathrm{d}}}{\beta d} s$$

• Easy to add in Phantom.

Dependence of the evolution at different distances from the star for objects with a fixed initial radius of 102 cm.

Rozner et al. (2020)

EROSION


- Add another new physical effect to dust growth: aeolian-erosion.
- Erosion modelled as a mass
 - $\left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)_{\mathrm{ero}}$
- Easy to add in A

= 0.5AU a = 1.0AU a = 1.5 AUR[cm] a = 2.0AU 60 a = 3.0 A L40 20 0 10^{-11} 10^{-10} 10⁻⁹ 10^{-8} 10-7 10⁻⁶ 10⁻⁵ time[Myr]

Dependence of the evolution at different distances from the star for objects with a fixed initial radius of 102 cm.

Rozner et al. (2020)

A SOLUTION TO EVERYTHING (42) \rightarrow FULLY IMPLICIT DRAG SCHEME!

		JJ. Mone	ighan / European Journa	of Mechanics / B Fluids 79 (2020) 454-462	45
Table 1 Liquid velocities : SPH and exact, $v_c(0) = 1.0$ $v_d(0) = 0.9$.				4.2. Stage 2: The strang splitting	
λ	P _{sph}	U _{nn}	$ \Delta v $	The equations that describe the	velocity change due to dra
0,1	0.997	0.996	4×10^{-8}	can be written in the form	
1.0	0.992	0.989	3×10^{-3}	dV	
10.0	0.985	0.983	3×10^{-3}		(4.5
100.0	0.987	0.983	4×10^{-3}	dt	

$$\mathbf{v}_{a}^{1} = \mathbf{v}_{a}^{0} - \frac{m_{j} (\mathbf{v}_{aj}, \mathbf{r}_{aj}^{*}) r_{aj}^{*}}{(m_{j} + m_{a}) (r_{aj}^{*})^{2}} (1 - e^{-\frac{1}{2}\omega\delta t})$$

$$\mathbf{v}_{j}^{1} = \mathbf{v}_{j}^{0} - \frac{m_{a}(\mathbf{v}_{aj}, \mathbf{r}_{aj}^{*})r_{ja}^{*}}{(m_{j} + m_{a})(r_{aj}^{*})^{2}}(1 - e^{-\frac{1}{2}\omega\delta t})$$

		$= -m_j s_{aj} (\mathbf{v}_{aj} \cdot \mathbf{r}_{aj}) \mathbf{r}_{aj},$	(4.10)
4.1. Stage 1: Integration to the midpoint	and		
We first integrate the equations for the sity, and the volume fraction through ha		$= -m_a s_{aj} \langle \mathbf{v}_{jj} \cdot \mathbf{r}_{aj} \rangle \mathbf{r}_{ja}.$	(4.11)
to		while integrating this equation over δr we replace $\hat{\rho}$, θ , and \mathbf{r}_{st} by $\hat{\rho}^*$, θ	
$\mathbf{r}_{\eta}^{\star} = \mathbf{r}_{\eta}^{0} + 0.5\delta t \mathbf{v}_{\eta}^{0}$		at we replace ρ , θ , and \mathbf{r}_{aj} by ρ^{-} , θ n as constant during the velocity inte	
$\widehat{\rho}_{\eta}^{\star} = \widehat{\rho}_{\eta}^{0} + 0.5\delta t (d\widehat{\rho}_{\eta}/dt)_{0},$		ere we integrate these equations exa	
$\theta_n^{\star} = \theta_n^0 + 0.5\delta t (d\theta_n/dt)_0,$		es of all quantities other than the velo assume that the function F in (2.6)	
where η is a label for either the dust or 1 The acceleration equation can be inte the force/mass terms into two terms, i involve the drag. The force terms not in or F_d as in (3.9) and (3.10). These forces mid point density, coordinates and volu velocity \mathbf{V}^I is then calculated for each pa	grated by first splitting produces of which does not a convolving the drag are F_r are calculated with the me fraction and a new when tricle according to when the fraction and the drag are the drag	as 1. By subtracting (4.11) from (4.10 uct with \mathbf{r}_{ql}^{*} (which has the midpoin stant during this integration step), $\mathbf{v} = -(\mathbf{m}_{l} + \mathbf{m}_{q})\mathbf{s}_{ql}(\mathbf{r}_{ql}^{*})^{2}X$, $\mathbf{e} X = (\mathbf{v}_{ql} \cdot \mathbf{r}_{ql}^{*})$. With X calculated fr Land (4.11) to get	t value and is therefore we get the equation (4.12)
$\mathbf{V} = \mathbf{V}^0 + \delta t \mathbf{F}^{1/2}.$	(4.4)	$\mathbf{v}_{a}^{0} - \frac{m_{l}(\mathbf{v}_{all} \cdot \mathbf{r}_{all}^{*})\mathbf{r}_{all}^{*}}{(m_{l} + m_{l})^{(m+1)2}} \left(1 - e^{-\frac{1}{2}\operatorname{od} t}\right),$	(4.13)

J.J. Monaghan (2020)

CONCLUSION & PROSPECTS

- New physics in Phantom:
 - **Porosity** with growth, fragmentation and bounce.
 - Rotational disruption.
 - Dust compaction during fragmentation.
- Find a robust method without numerical artefacts to simulate a gas and porous dust disc
 - Gas disc relaxation first.
 - Add dust with the 2-fluid method with correct initial conditions.
- Determine the thickness of dust midplanes with porous grains.
- Determine if and where the conditions to form planetesimals are fulfilled.
- Explain, if it happens, the rapid formation of planetesimals.

