Semi-Analytic Models of Spiral
Planct Wakes

+ some applications
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Simulation data from Verrios+ (2022)



Take Fourier modes (1n azimuth) of planet potential:
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...and run a hydro simulation for each:
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Spiral Wake Structure



How can we understand this?

Calculate the linear disk response (w —mQ)? = k2 — 20G|k|Zp + 2k

N Lin & Shu (1964)
(+ WKBJ approximation)



2 .
Lindblad resonances occur when Q% = m? (Q — Qp) since the solution explodes



Spiral mode phase

Bae & Zhu (2018)
Obtain lines of constant phase
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Semi-Analytic Calculation



Local approximation
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Linear wake generation

(solve nearby planet
for Fourier components)
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ICs for
propagation
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Non-linear wake propagation
(use linear as initial condition)

0eX —XOnx =0

Solved with finite-volume
(Godunov) scheme then mapped
to real space

(If you are interested in the details, ask me
afterwards! The derivation is very long)
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Wakeflow: A Python package for semi-analytic models
of planetary wakes
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Method improvements:

Higher order accuracy for velocity components
Adaptive time-stepping

Efficiency (100x speed increase)

More accurate initial condition retrieval

+ more

O

~ % plp install wakef low
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Velocity improvement

First order in v Exact form for v
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Applications
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Disk Kinematics

Line of Sight Velocity = 4.1 km/s
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A Dec (")

Disk Kinematics

Line of Sight Velocity = 0.5 km/s

A RA (")

Data from Czekala et al. (2021); Oberg et al. (2021)
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Velocity [km/s]
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Calcino+ (2022)
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A Dec ["]

Post-subtraction of a
pressure supported model
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Other possible applications:

e Statistical tools:

* Daniele Fasano working on incorporating Wakeflow into Discminer
to measure planet masses from kinematics

* Cheap parameter space exploration before expensive hydro
models
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Temperature

We assume that the sound speed ¢, obeys a simple radial power law:
cs x R7Y,
where R is a cylindrical radius coordinate and q is some real number. Thus temperature T" must scale
Toxc?xc R4,
Density

The density structure is derived asssuming the disk is in vertical hydrostatic equilibrium (eg. Pringle
1981). The density p is given by

R\ GM, 1 1
2 =or) (7)o (S [~ 7))

where z is the height, R,.¢ is some reference radius, p is some real number, GG is the gravitational
constant and M, is the mass of the central star.

wakeflow also supports the commonly used “exponentially-tapered” density structure, given by

P(R, 2) = p(Rrer) (%) N exp (— [R%] H) exp (Gfg [ \/ﬁ - %D

where R, is the “critical radius”. This density structure is automatically used in wakeflow if you

specify r_c to be non-zero.

Velocities

The velocities are derived assuming radial force balance (eg. Nelson et al. 2013). The radial and
vertical motions are set to zero, while the rotation is given by

1/2
N H\? 2qR
Q(R,Z) —QKl (p+2q)<i) +(1 2q)+ R2—+22 ’

where Qg = 4/ G}g‘ is Keplerian rotation and H = ¢, /Q is the disk scale height.

Surface Density

Very commonly the density structure in disk models is specified in terms of the surface density ¥,

defined by
(o o]
= / pdz.
—00

Assuming we care only about regions of the disk where z < R, one can show that density and
surface density are related by (see for example the lecture notes by Armitage, 2022)

¥ =+/2rHp.
Thus if you parameterise the disk density by 3 oc R~7, then «y is related to p and g by

3
== —q+7.
p=5 -9t

Thus p and 7y are not in general the same, although it is tempting to think that they could be.

wakeflow.readthedocs.io o7



Additionally the ¢ transformation becomes (Rafikov, 2002a)

5
3 (rp \2| [/, s 3 5q+_11
) = oo (E,) /1 a8 AR e g (4.10)
where explicitly the g function is given by (Bollati et al., 2021)
o\ 3 (L)i—‘s%s‘l
g(r) =2'/1 (—I;,"—) e (411)
p 1
‘1 = (£
dt(s) rp [Q(s) —Qp]
=2 |20 Pl () =0. 4.12
ds lp C()(S)g(S) ( P) ( )

where obtaining ¢(r) from the solution ¢(s) is simply a matter of taking s = r. Applying this analysis
to the ¢ transformation for a power law disk (4.10) we obtain

5
dt(s) 3 T 2, 3 3 5g+6 11
0 gt (37 -
P

. t(1) =0, (4.13)

s =r/rp.
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®m.1 (n =1 components) Gm.2 (n = 2 components)

® Planet
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