Enhancing AGB Outflow Simulations: Implementing a Ray-Tracing Algorithm in PHANTOM for Efficient Radiation Field Computation

Mats Esseldeurs

Instituut voor sterrenkunde KU Leuven **Collaborators:** L. Siess F. De Ceuster W. Homan J. Malfait S. Maes T. Konings T. Ceulemans O. Vermeulen L. Decin

Evolution of 1 M_{\odot} star

AGB stars White dwarf Post-AGB 10³ Asymtotic giant Low and intermediate mass branch • $M_{ini} \in [0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}]$ Red Luminosity [L_☉] giant branch 10^{1} Subgian branch Main Sequence 10⁰ 7000 6000 5000 4000 3000 Temperature [K]

Evolution of 1 M_{\odot} star

AGB stars ≺ White dwarf Post-AGB 10³ Asymtotic giant branch Low and intermediate mass • $M_{ini} \in [0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}]$ Luminosity [L_☉] 10^{1} Subgian branch Main Sequence 10⁰ -7000 6000 5000 4000 3000 Temperature [K]

Evolution of 1 M_{\odot} star

AGB stars

- Low and intermediate mass
- $M_{ini} \in \left[0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}\right]$
- Significant mass loss
 - $\dot{M} = 10^{-8} 10^{-4} \,\mathrm{M_{\odot}/yr}$
 - $v_{\infty} = 5 25 \text{ km/s}$
- Dust-driven wind

AGB's dust-driven wind

AGB outflows

- Non-spherically symmetric
- Companion perturbed
- understanding through simulations

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

Gravity
AGB star

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

Gravity
AGB star
Gravity
Gravity
Gravity
Gravity

• 3D Smoothed Particle Hydrodynamics (SPH)

• 3D Smoothed Particle Hydrodynamics (SPH)

• 3D Smoothed Particle Hydrodynamics (SPH)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
</tr

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/c}{GM_{AGB}/r_1^2}$$
, $\kappa(T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

• 3D Smoothed Particle Hydrodynamics (SPH)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
</tr

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/c}{GM_{AGB}/r_1^2}$$
, $\kappa (T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_\star}{r}\right)^2} \right) T_\star^4$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi c G M_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$
Attenuation	$\Gamma = \frac{\kappa L_{AGB}}{4\pi c G M_{AGB}} e^{-\tau}$	$T_{eq}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_\star}{r}\right)^2} \right) e^{-\tau} T_\star^4$

•
$$\kappa_i \rho_i$$

• d_i

•
$$\kappa_i \rho_i$$

Magritte

•
$$\kappa_i \rho_i$$

Ray-tracer

At each point K:

•
$$\kappa_i \rho_i$$

 d_i

•
$$\kappa_i \rho_i$$

$3D \rightarrow Healpix$

• τ_i

Linear interpolations between points

Interpolation along a ray

At each point K:

• τ_i

Linear interpolations between points

au at closest point along the ray

Trace more rays

Trace more rays

Interpolate au between closest rays

[ŋ	
y [a	

y [au]

Value	Unit	-10
3×10^{-6}	$M_{\odot} yr^{-1}$	
1.02	${ m M}_{\odot}$	
4384	$ m L_{\odot}$	10
2874	Κ	
1.24	au	
	Value 3×10^{-6} 1.02 4384 2874 1.24	$\begin{array}{c cc} Value & Unit \\ 3\times 10^{-6} & M_{\odot} yr^{-1} \\ 1.02 & M_{\odot} \\ 4384 & L_{\odot} \\ 2874 & K \\ 1.24 & au \end{array}$

Parameter	Value	Unit	Ξ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

free-wind 100--15 -16 _m2 ق امق ل 17_ 0 • -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	Γ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} \mathrm{yr}^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	Κ	
$R_{ m AGB}$	1.24	au	

100-

Parameter	Value	Unit	Γ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	Κ	
$R_{ m AGB}$	1.24	au	

Lucy 100--15-16 _ -17 [d cm 0 • -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	_
	2 × 10-6		n
MAGB	3 × 10 °	IVI _⊙ yr	[a
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	>
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

attenuation 100-0 -100 -100 100 0 x [au]

-14

-15

m2 ق امق ل 17

-18

[ŋ	
y [a	

y [au]

Value	Unit	-10
3×10^{-6}	$M_{\odot} yr^{-1}$	
1.02	${ m M}_{\odot}$	
4384	$ m L_{\odot}$	10
2874	Κ	
1.24	au	
	Value 3×10^{-6} 1.02 4384 2874 1.24	$\begin{array}{c cc} Value & Unit \\ 3\times 10^{-6} & M_{\odot} yr^{-1} \\ 1.02 & M_{\odot} \\ 4384 & L_{\odot} \\ 2874 & K \\ 1.24 & au \end{array}$

Validation Study

- Full 3D radiation transfer code Magritte
- Lucy approximation most accurate

x [au]

Conclusions

- Dust formation and radiative transfer is crucial
- Different approximations can make significant changes
- Lucy approximation most accurate

Future work

- Combination of Lucy and attenuation approximation
- Couple Phantom to MCFOST for full radiation transfer calculation

Esseldeurs et al. (2023)

Tripple simulations and disk formation

Jolien Malfait

Malfait+ (in prep. a,b)

Machine learning Approach to Chemistry Emulation (MACE)

 $\times 10^{\circ}$ $\rho \; [{\rm cm}^{-3}]$ 500 🗵 10^{-2} 10^{-5} Abundance relative to H_2 10^{-8} CO 10^{-11} H₂O 10^{-14} C_2H_2 C_2H 10^{-17} $\mathrm{CH}_3\mathrm{C}_5\mathrm{NH}^+$ $C_{10}H_2^+$ 10^{-20} log relative error 0.00-0.25-0.50 10^{15} 10^{16} 10^{17} 10^{14} 10^{18} Radius [cm]

Silke Maes

Maes+ (in prep.)

Magritte

Open-source software library for
 3D non-LTE line radiative transfer

De Ceuster+ (2020a,b; 2022), Ceulemans+ (in prep.), github.com/Magritte-code/Magritte

- Optimize discretization for RT through remeshing (De Ceuster+ 2020b & accelerated by Ceulemans+ in prep.)
- Traces rays and solves RT equation along each ray
- GPU version in progress

ThomasFrederik DeCeulemansCeuster

R Aql observation Triple system synthetic observations Intensity [W m⁻² sr⁻¹ Hz⁻¹] 10⁻¹⁶ 10-15 10-17 10-14 -1.0- 1.0 1000 · -0.8 0.9 -1 Relative intensity image y [arcsec.] 500 -Relative Intensity 0.8 image y [AU] -0.6 0 -0 0.7 -0.40.6 -500 . 1 · -0.20.5 -1000 · -0.00.4 -10 10 -1000-500 500 1000 0 0 100 -10 0 -1 velocity [km / s] image x [AU] velocity [km/s] image x [arcsec.]

Jolien Malfait Owen Vermeulen

Jolien Malfait Owen Vermeulen

