DUST GRAIN EVOLUTION IN PROTOPLANETARY DISKS

Jean-François Gonzalez

HOW DO PLANETS FORM?

Core-accretion paradigm

- Planet formation barriers: radial drift, fragmentation
- Proposed solutions: thin, dense mid-plane layer of pebbles
 - Streaming instability
 - Self-induced dust traps
- No quantitative observational constraint!

- Changing grain density
 - Composition
 - Porosity

POROSITY

Collisional evolution

• Porous grains are larger \Rightarrow faster growth

Stokes number

 Epstein regime: St_{Epstein} = $\frac{\Omega_{\rm K} \rho_{\rm s} \phi s}{\rho_{\rm g} c_{\rm s}}$ Stokes regime: St_{Epstein} = $\frac{4 \Omega_{\rm K} \rho_{\rm s} \phi s^2}{9 \rho_{\rm g} c_{\rm s} \lambda_{\rm g}}$

POROSITY EVOLUTION MODEL: PURE GROWTH

POROSITY EVOLUTION MODEL: BOUNCING

Michoulier+Gonzalez2024

POROSITY EVOLUTION MODEL: FRAGMENTATION

Michoulier+Gonzalez2024

POROSITY EVOLUTION MODEL: COMPACTION

Michoulier+Gonzalez2024

CTTS disk

- $M_{\star} = 1 M_{\odot}$
- $M_{\rm disk} = 0.01 \ M_{\odot}$
- ▶ p = 3/4
- ▶ q = 1/2
- $\alpha = 5 \times 10^{-3}$

Material

- Silicates, v_{frag} = 10, 20, 40 m.s⁻¹
- Water ice, v_{frag} = 15 m.s⁻¹

Dust

- Initial dust/gas ratio
 - $\epsilon_0 = 1\%$, uniform
- Monomer size
 - $a_0 = 0.2 \, \mu m$
- Size evolution
 - Growth + fragmentation
 - w/o or w/ compaction
- Porosity evolution
 - Compact only
 - Porous, $\phi_0 = 1$

SIMULATION RESULTS

PHANTOM 10

Silicates with growth+fragmentation, *t* = 100,000 yr

SIMULATION RESULTS

Silicates with growth+fragmentation, t = 100,000 yr

.

PHANTON

12

- Triggering criterion for the SI expressed in terms of St
 - what size do grains with St ~ 1 have?
- Global simulations provide size and porosity at each location
 - verify the viability of the SI
 - study robustness of SIDTS

EFFECTIVENESS OF THE STREAMING INSTABILITY

Compact silicates with growth+fragmentation $v_{\rm frag} = 20 \text{ m.s}^{-1}$

- Triggering criteria
 - ε ≥ 0.5
 - ► St ~ 0.01−1
 - $\square = \Delta v/c_s > 0.01$
- Sizes and porosities compatible w/ obs.
 - ▶ s > 0.3−1 mm

EFFECTIVENESS OF THE STREAMING INSTABILITY

PHANTOM 14

Porous silicates with growth+fragmentation+compaction $v_{\rm frag} = 20 \text{ m.s}^{-1}$

- Triggering criteria
 - ε ≈ 0.5
 - ► St ~ 0.01−1
 - $\square = \Delta v/c_s > 0.01$
- Sizes and porosities compatible w/ obs.
 - ▶ s > 0.3−1 mm

EFFECTIVENESS OF THE STREAMING INSTABILITY

Porous silicates with growth+fragmentation+compaction+snow line $v_{\text{frag,in}} = 20 \text{ m.s}^{-1}, v_{\text{frag,out}} = 5 \text{ m.s}^{-1}$

Triggering criteria

- ε ≈ 0.5
- ► St ~ 0.01−1
- $\square = \Delta v/c_s > 0.01$
- Sizes and porosities compatible w/ obs.
 - ▶ s > 0.3−1 mm

 \bigcirc

PHANTOM

15

Conclusions w/ PHANTOM

- Porosity needed: compact grains too small, porous grains observed
- Compaction needed: observed porosities only moderate
- CO snow line: retains more grains, helps SI triggering conditions

Perspectives w/ MCFOST

- Global simulations of spatial, size and porosity evolution
 - more realistic settling profiles
 - better multi-λ fitting with MCFOST
- Porosity as a space-varying property in MCFOST
 - search for porosity variations in observed discs

