Polarimetry as a Probe of Protoplanetary Disk Properties

Rachel Harrison, Monash University

In collaboration with: Christophe Pinte, Daniel Price, Leslie Looney, Ian Stephens, Zhe-Yu Daniel Lin, Zhi-Yun Li, Haifeng Yang, and Manuel Fernández-López

5th Phantom and MCFOST Users Workshop, 12 February 2024

DSHARP Survey, Andrews et al. 2018

SPHERE observations of HD 169142, Hammond et al. 2023

ALMA observations of CO J = 2-1 in HD 163296, Pinte et al. (2018)

Pinte et al. (2018)

Haro 6-13, RY Tau, MWC 480, DL Tau, and V892 Tau, Harrison et al. 2024 (in review)

Declination (J2000)

2019

IM Lup, Hull et al. 2018

But what about magnetic fields???

ESA, Planck Collaboration

But what about magnetic fields???

Cox et al. 2018

But what about magnetic fields???

Figure 8. Magnetic field orientation for the ring around VLA

BHB 07-11, Alves et al.

IRAS 16293, Sadavoy et

Dust Polarization from Scattering

Kataoka et al. 2015, Stephens et al. 2017

Kataoka et al. 2015

Scattering in Inclined Disks

Yang et al. 2016

Measuring Dust Grain Sizes: Two Approaches

- Spectral index measurements
 - If dust is optically thin: $F_{\nu} \propto \nu^{\alpha}$
 - Opacity depends on frequency as $\kappa(\nu) \propto \nu^{\beta}$
 - $\alpha = 2 + \beta$
 - Implies grain radii ~1 mm

- Scattering polarization measurements
 - Degree of polarization peaks when maximum grain radius $\sim \lambda/2\pi$
 - Polarization at mm and sub-mm wavelengths implies grain sizes ~0.1 mm

		870 μm	
	18°13'58.0"	HLTau	
Dec (J2000)	57.5"		
	57.0"		
	56.5"		
	۸hΞ	100 AU	Q /
	4 3)C 0.00 00	J.4

RA (J2000)

ALMA Band 7)

Scattering Polarization and Optical Depth

Yang et al. 2017

Net polarization from scattering depends on the radiation field a grain "sees":

Isotropic radiation environment: little net scattering Anisotropic radiation environment: net scattering

10

∆ Dec [au]

870 μ m Model

Dual-wavelength Disk Survey

Harrison et al., submitted to ApJ

Scattering at Multiple Wavelengths

Harrison et al., submitted to ApJ

Optical Depth: Single-Population Model

Harrison et al., submitted

Vertical Dust Settling: Two-population Model

Harrison et al., submitted to ApJ

Scattering from Porous Dust Aggregates

Less porous

More porous

Tazaki et al. 2019, 2022

Dec (ICRS)

Grand Unified Theory of Dust Polarization

Explain both polarization spectrum and spectral indices with one dust population