Self gravity in protostellar discs: Why (we must) care?

Cristiano Longarini

Institute of Astronomy, University of Cambridge

5th PHANTOM and MCFOST Users Workshop February 2024

Main collaborators: Giuseppe Lodato, Cathie Clarke, Daniel Price, Philip Armitage, Simone Ceppi, Paola Martire, Benedetta Veronesi and many others

1. Self gravity is important to understand disc structure Probing the disc masses and sizes

 Importance of thermal stratification • Veronesi, Longarini et al., Martire, Longarini et al. in prep

2. Self gravity contributes to planet formation in young discs

- Planetary cores formation through dust collapse
- Early evolution of planetary cores

3. Cool splash snapshots

A zoo of substructures

Andrews et al. 2018

Hydrodynamical modeling

Veronesi et al. 2020

PHANTOM

Kinematic signatures

Stadler et al. 2023

Pinte et al. 2019

Direct imaging

Benisty et al. 2021 Facchini et al. 2021

Young protostellar discs

VANDAM Survey of Orion protostars, Tobin 2020

Evidence that in younger SFRs mm flux of ppds is higher

Possible interpretation: younger discs are more massive

How does SG influence disc structure?

How does SG contributes to planet formation?

Self-gravity: the basic state

$$\frac{M_d}{M_{\star}} \gtrsim 0.$$

 $\Phi = \Phi_{\star} + \Phi_d$

Star

Star contribution:

Keplerian contribution at the position (R,z)

Lodato et al. 2023

Disc contribution:

$$R\frac{\partial\Phi_d}{\partial R} = G \int_0^\infty \left[K(k) - \frac{1}{4} \left(\frac{k^2}{1 - k^2} \right) \left(\frac{R'}{R} - \frac{R}{R'} + \frac{z^2}{RR'} \right) E(k) \right] \sqrt{\frac{r}{R}} k \Sigma \left(R' \right) dR'$$

Disc mass and size dependance in the surface density (self similar hp)

$$\Sigma(R) = \frac{M_d(2-\gamma)}{2\pi R_c^2} \left(\frac{R}{R_c}\right)^{-\gamma} \exp\left[-\left(\frac{R}{R_c}\right)^{-\gamma}\right]$$

$$\Big)^{2-\gamma}$$

Bertin & Lodato 1999

Pressure gradient:

$$P = c_s^2(R)\rho(R,z), \quad \rho(R,z) = \rho_{mid}$$

After algebra...

$$v_{\phi}^2 = v_{\rm K}^2 \left\{ 1 - \left[\gamma' + (2 - \gamma) \left(\frac{R}{R_{\rm c}} \right)^{2 - \gamma} \right] \right\}$$

Vertically isothermal disc

Lodato et al. 2023

$$v_{\phi}^2 = v_{\rm K}^2 \left\{ 1 - \left[\gamma' + (2 - \gamma) \left(\frac{R}{R_{\rm c}} \right)^{2 - \gamma} \right] \right\}$$

If we measure

- height emitting layer z(R)

If we assume

- thermal structure H/R, q
- surface density profile γ

 $\left| \left(\frac{H}{R} \right)^2 - q \left(1 - \frac{1}{\sqrt{1 + (z/R)^2}} \right) \right| + v_d^2$

We can fit for

- star mass M_{\star}
- disc mass M_d
- scale radius R_c

Veronesi et al. subm. Veronesi et al. 2021 Lodato et al. 2023 Martire et al. subm

Dynamical masses and sizes

Veronesi et al. 2021

Lodato et al. 2023

Benchmarking the method

SG gas discs, no GI (isosgdisc) Vertically isothermal discs, self similar profile with $R_c = 100 a u$

$M_d \in [0.01, 0.2] M_{\odot}$

MCFOST radiative transfer

Datacubes of 12CO, 13CO J=2-1

pymcfost: "pseudocasa" $\Delta x = 0.1'', \Delta v = 100$ m/s

Veronesi, Longarini et al. subm

Model verification - hydro curves

Extraction of the hydro azimuthal velocity at the midplane

- correct scaling with disc mass
- Visible differences from a non SG model only for $M_d/M_{\star} > 0.05$

Sims	$M_{\rm d}~[{ m M}_\odot]$	
md0.2	0.19	
md0.15	0.14	F
md0.1	0.1	fi
md0.05	0.05	С
md0.025	0.028	
md0.01	0.017	

Results of the itting procedure on hydro curves

Veronesi, Longarini et al. subm

Complete procedure

Results of the fitting procedure: M_{\star}, M_d, R_c

	$\Delta X/X_{12}_{\rm CO}$	¹³ CO	$\Delta X/X_{13}_{CO}$	Combined	$\Delta X/X_{\rm comb}$
1.02	0.02	$M_{\star} = 0.99$	0.01	$M_{\star} = 0.99$	0.01
0.03	1.99	$M_d = 0.00$ $R_s = 105.15$	1.0	$M_d = 0.00$ $P_d = 102.7$	1.0
50.00	0.2	$R_c = 103.13$	0.05	$R_c = 105.7$	0.037
0.99	0.01	$M_{\star} = 0.99$	0.01	$M_{\star} = 0.99$	0.01
0.04	0.6	$M_d = 0.00$	1.0	$M_d = 0.00$	1.0
92.17	0.078	$R_c = 115.55$	0.15	$R_c = 115.2$	0.15
0.99	0.01	$M_{\star} = 0.97$	0.03	$M_{\star} = 0.98$	0.02
0.044	0.12	$M_d = 0.07$	0.4	$M_d = 0.055$	0.099
102.78	0.028	$R_c = 94.27$	0.057	$R_c = 97.8$	0.022
1.04	0.04	$M_{\star} = 0.97$	0.03	$M_{\star} = 0.97$	0.03
0.09	0.10	$M_d = 0.12$	0.20	$M_d = 0.12$	0.19
88.33	0.117	$R_c = 90.8$	0.09	$R_c = 91.2$	0.088
1.00	0.0	$M_{\star} = 1.00$	0.0	$M_{\star} = 1.00$	0.0
0.18	0.2	$M_d = 0.15$	0.0	$M_d = 0.15$	0.0
86.00	0.14	$R_c = 87.5$	0.125	$R_c = 88.114$	0.12
1.1	0.1	$M_{\star} = 1.06$	0.06	$M_{\star} = 1.12$	0.12
0.165	0.175	$M_d = 0.15$	0.25	$M_d = 0.09$	0.55
87.26	0.13	$R_c = 84.9$	0.15	$R_c = 96.23$	0.037

Veronesi et al. subm.

Complete procedure

Results of the fitting procedure: M_{\star}, M_d, R_c

	$\Delta X/X_{12}_{CO}$	¹³ CO	$\Delta X/X_{13}_{CO}$	Combined	$\Delta X/X_{\rm comb}$
1.02	0.02	$M_{\star} = 0.99$	0.01	$M_{\star} = 0.99$	0.01
0.03	1.99	$M_d = 0.00$	1.0	$M_d = 0.00$	1.0
80.00	0.2	$R_c = 105.15$	0.05	$R_c = 103.7$	0.037
0.99	0.01	$M_{\star} = 0.99$	0.01	$M_{\star} = 0.99$	0.01
0.04	0.6	$M_d = 0.00$	1.0	$M_d = 0.00$	1.0
92.17	0.078	$R_c = 115.55$	0.15	$R_c = 115.2$	0.15
0.99	0.01	$M_{\star} = 0.97$	0.03	$M_{\star} = 0.98$	0.02
0.044	0.12	$M_d = 0.07$	0.4	$M_d = 0.055$	0.099
102.78	0.028	$R_c = 94.27$	0.057	$R_c = 97.8$	0.022
1.04	0.04	$M_{\star} = 0.97$	0.03	$M_{\star} = 0.97$	0.03
0.09	0.10	$M_d = 0.12$	0.20	$M_d = 0.12$	0.19
88.33	0.117	$R_c = 90.8$	0.09	$R_c = 91.2$	0.088
1.00	0.0	$M_{\star} = 1.00$	0.0	$M_{\star} = 1.00$	0.0
0.18	0.2	$M_d = 0.15$	0.0	$M_d = 0.15$	0.0
86.00	0.14	$R_c = 87.5$	0.125	$R_c = 88.114$	0.12
1.1	0.1	$M_{\star} = 1.06$	0.06	$M_{\star} = 1.12$	0.12
0.165	0.175	$M_d = 0.15$	0.25	$M_d = 0.09$	0.55
87.26	0.13	$R_c = 84.9$	0.15	$R_c = 96.23$	0.037

Veronesi et al. subm.

Uncertainties

We vary the "fixed" parameters to understand the impact of systematic errors

- Minimum measurable disc to star mass ratio $\sim 5\%$ - Uncertainty on the disc mass ~ 25%

 \rightarrow Aspect ratio (fit), inclination (extraction) and emitting layer (extraction+fit)

Veronesi et al. subm.

A step forward: vertical stratification

Law et al. 2021

From hydrostatic equilibrium + centrifugal balance

$$v_{\phi}^{2}(R,z) = v_{k}^{2} \left\{ \left[1 + \left(\frac{z}{R}\right)^{2} \right]^{-3/2} - \left[\gamma' + (2-\gamma) \left(\frac{R}{R_{c}}\right)^{2-\gamma} - \frac{d\log(fg)}{d\log R} \right] \left(\frac{H}{R}\right)^{2}_{\text{mid}} \frac{f(R,z)}{d\log R} \right] \right\}$$

There is evidence from molecular line observations that protoplanetary discs are thermally stratified

Consequences on density and velocity?

$$T(R, z) = T_{mid}(R)f(R, z)$$

$$\rho(R, z) = \rho_{mid}(R)g(R, z)$$

Model verification

PHANTOM simulations

Vertically stratified disc (credits to Caitlyn!)

Parameters of GM Aur from Law et al

$$T(R, z)^{4} = T_{\epsilon}^{4}(R) + \frac{1}{2}T_{\text{atm}}^{4}(R) \left[1 + \tanh\left(\frac{z}{Z_{q}(R)}\right)\right]$$

Test whether the model works or not

NB: initial density and velocity are not at hydro equilibrium, we just prescribe the temperature

Martire et al. subm.

Vertical stratification in MAPS discs

Martire et al. subm.

Vertical stratification in MAPS discs

 $M_{\star} [M_{\odot}]$

MWC 480

Isothermal Stratified

 1.969 ± 0.002 2.027 ± 0.002

GM Aur

Isothermal Stratified

 0.872 ± 0.003 1.128 ± 0.002

Martire et al. subm.

Self gravity VS Gravitational instability

Self gravitating systems

Gravitationally unstable systems

Self gravitating systems

SG influences disc structure

G. unstable systems

Development of large scale spiral structure (transport angular momentum)

$$Q = \frac{c_s \kappa}{\pi G \Sigma} \sim 1 \qquad \frac{\text{Pressure, Rota}}{\text{Self gravity}}$$

Gravitational instability and planet formation

Boss 1997

First hydrodynamical simulations of gravitationally unstable protostellar discs

 \rightarrow Possibility to rapidly form Jupiter mass body through gas fragmentation in the outer disc

Initial mass is too high to form a planet because of accretion (Kratter & Lodato 2016)

Boss et al. 1997

Non (gas) fragmenting case

Interplay with dust dynamics

Rice et al. 2004-2006

First 3D SPH simulations of gas and dust GI discs.

- **Efficient** dust trapping inside spiral arms

- Dust is so unstable that **collapses**

 $\sim 1 M_{\oplus}$ planetesimals

2D SPH simulations of gas and dust GI discs.

Important parameter is dust dispersion velocity $c_d \propto S t^{1/2} \beta^{-1/2}$ since it determines the effective "temperature" of the dust

Warning: Low resolution

Booth & Clarke 2016

Longarini et al. 2023a

Analytical study of 2 fluid gravitational instability

When the dust is enough concentrated and sufficiently cold, it can drive instability

 $M_{Jeans} \simeq 1 - 10 M_{\oplus}$

What happens to dust?

Dust grain

Spiral arm

What happens to dust?

Dust grain

Stokes number

Strength of the spiral

Spiral arm

 $\frac{\delta\Sigma}{\Sigma} \propto \beta^{-1/2}$

St $\delta\Sigma/\Sigma$

What happens to dust?

Dust grain

Stokes number

Strength of the spiral

Spiral arm

Efficiently excited: Stronger kick if - Low β - High St

St

 $\delta\Sigma/\Sigma$

Not efficiently excited: Weaker kick if - High β

- Low St

Hydro simulations

1M - 2M gas particles 250K - 500K dust particles

GI strength u

Dust paramet

 ϵ : dust to gas

 C_d : dispersion velocity

	Simulation	M_d/M_{\star}	$m{eta}_{ m cool}$	s [cm]	$\langle St \rangle$	s ₁₀ [
PHANIUM						
	S1	0.05	8	300	40	3
State State	S2	0.05	10	300	40	3
	S3	0.05	15	300	40	3
	S4	0.05	8	60	8	0.6
	S5	0.05	10	60	8	0.6
	S6	0.05	15	60	8	0.6
	S7	0.1	8	600	40	6
	S8	0.1	10	600	40	6
	S9	0.1	15	600	40	6
	S10	0.1	8	120	8	1.2
	S11	0.1	10	120	8	1.2
	S12	0.1	15	120	8	1.2
	S13	0.2	8	1500	40	15
	S14	0.2	10	1500	40	15
ters	S15	0.2	15	1500	40	15
	S16	0.2	8	600	16	6
ratio	S17	0.2	10	600	16	6
	S18	0.2	15	600	16	6

Dust dispersion velocity

 $c_d \propto S t^{1/2} \beta^{-1/2}$

Longarini et al. 2023b

Dust collapse

We observe dust collapse only for

Evolutionary scenario

Stage 1

Very massive disc M_{d1} strongly gravitationally unstable High \dot{M}_{inf} - Low eta_{cool} Gas likely to fragment \rightarrow Stellar companions formation

gravitationally unstable Dust likely to fragment \rightarrow Planet formation

Massive disc $M_{d2} < M_{d1}$ Lower \dot{M}_{inf} - Higher β_{cool}

Time

Stage 2

Stage 3

Gravitationally stable disc $M_{d3} < < M_{d2}$ with already formed planets

Longarini et al. 2023b

Evolutionary scenario

Stage 1

Time

Stage 2

Stage 3

Multiplicity? Dynamical interactions? Environment?

gravitationally unstable

- Lower \dot{M}_{inf} Higher β_{cool} Dust likely to fragment
 - \rightarrow Planet formation

Gravitationally stable disc $M_{d3} < < M_{d2}$ with already formed planets

Longarini et al. 2023b

Other possible scenarios

Vasu Prasad, PhD Student @ IoA, Cambridge

What after?

Planetary cores (1-10 Earth) formation in the outer disc in massive discs at the end of the GI phase (SG disc)

Planetary cores are sub-thermal mass \rightarrow Type I migration

Type I migration timescale

Tanaka et al. 2002

$$t_{M1} = \frac{M_{\star}}{M_p} \frac{M_{\star}}{\Sigma R_p^2} \left(\frac{H}{R}\right)_p^2 \Omega_p^{-1}$$

Time to reach the thermal mass through accretion

D'angelo & Lubow 2008

$$t_{acc} = \frac{M_{th}}{\dot{M}_p} = 3\left(\frac{H}{R}\right)_p^4 \frac{M_{\star}}{M_p} \frac{M_{\star}}{\Sigma R_p^2} \Omega_p^{-1} \eta^{-3}$$

Survival of the cores

 $\tau = \frac{3}{\eta^3} \left(\frac{H}{R}\right)_n^2$

Accretion ts

Migration ts

 $\eta = R_{acc}/R_h$

 $\tau > 1 \rightarrow$ Planetary core does not survive

 $\tau < 1 \rightarrow$ Planetary core survives

Antonio Costantinou, Master student @ IoA

PHANTOM H/R Mp η Τ 0.25 Sim1 10 0.1 ~1 Sim2 0.1 0.5 10 <1 0.2 Sim3 10 0.25 >1 Sim4 0.25 20 0.1 ~1

ts +

(c) 2023 Cristiano Longarini

0

Migration VS accretion

Conclusion and future perspectives

• Precisely modelling the **rotation curve** gives a unique opportunity to investigate protoplanetary discs structure \rightarrow How many information can we get from the rotation curve? Is it possible to directly reconstruct the thermal structure?

balance) in the .tmp

• The dynamical role of dust in GI discs is crucial and it can explain the formation of **planetary cores** in young protoplanetary discs \rightarrow Can these cores survive in young discs?

For PHANTOM: Allow for the creation of sink particles from dust

For PHANTOM: Implement correct initial condition (hydro eq. + centrifugal

