

Photospheric Evolution in Common Envelope

Chunliang Mu Macquarie University

In collaboration with Orsola De Marco, Luis Bermudez (Macquarie University), Daniel Price, Mike Lau, and Ryo Hirai (Monash University)

Introduction

- Common Envelope:
 - What is it?
 - Why is it hard?
 - Why do we care?
- Smoothed Particle Hydrodynamics (SPH) simulations
 - Software used:
 - Phantom
 - Sarracen
- Source:

9

https://phantomsph.github.io/ https://github.com/ttricco/sarracen My code also available on https://github.com/chunliangmu/clmuphantomlib

PHANTOM

Introduction

Optical lightcurves of luminous red novae

Simulations setup

González-Bolívar st al., 2022

2 simulations

- $1.7 \, M_{\odot}$ & $3.7 \, M_{\odot}$ primary AGB star, with $0.6 \, M_{\odot}$ point-mass companion
- $1.7M_{\odot}$ case: $R_1 = 260R_{\odot}$, $a_0 = 550R_{\odot}$, $P_0 = 2.7yr$
- $3.7M_{\odot}$ case: $R_1 = 330R_{\odot}$, $a_0 = 637R_{\odot}$, $P_0 = 2.5yr$
- Nucleation dust (Gail et al., 1984) formation included, assuming <u>carbon rich</u>

Bermúdez-Bustamante et al., 2024

Obtaining the opacity κ

Opacity κ sources:

- Gas opacity (using tabulated MESA (1D stellar structure code))
 - NB: at low *T*, κ_{MESA} assumes oxygen dust
- Dust opacity (calculated in PHANTOM)

$$\kappa = \kappa_{dust} + \kappa_{gas}$$
$$\kappa_{gas} = \begin{cases} 2 \times 10^{-4} \text{cm}^2 \text{g}^{-1} & \text{if } T < T_{cutoff} \\ \kappa_{MESA} & \text{if } T \ge T_{cutoff} \end{cases}$$

How optical depth is integrated (the splash way)

Defining the photosphere

- The photosphere is the surface of last scattering i.e. the surface you see
- The photosphere is wavelength dependent, but here we assume it is grey
- At t=12 year, the object is huge (~100AU)

Photosphere Evolution: Shape

- Photospheres become spheres after $t \approx 8yr$
- $R_{\rm ph}$ contracts for $1.7 M_{\odot}$ case
- $3.7M_{\odot}$ case expands faster

$3.7 M_{\odot} (q = 0.16)$, no dust

Photosphere Evolution: Shape

- Formation of a dust shell
- Happens later for $3.7M_{\odot}$ case
- $T_{\rm ph}$ hot spot near pole

Photosphere Evolution: Size

- Dust creation increases $R_{\rm ph}$ with sudden jumps
- With dust *R*_{ph} increases steadily with *t*
- Without dust $R_{\rm ph}$ stabilizes after ~10 years
- Photosphere shape asymmetries slowly dies out later in simulations

Photosphere Evolution: Temperature

[Preliminary Results]

- A sudden drop in *T* after dust formed
- Later *T* stablizes and slowly declines

Photosphere Evolution: Fluid expansion rate

i.e. The velocity of the fluid at the photosphere (not the velocity of the photosphere)

[Preliminary Results]

- A dip at round 2nd year
- Stabilizes at later years

Changes potentially due to shift of the photosphere instead of acceleration / deceleration of the fluid

Conclusions

Summary

- Without dust formation:
 - The photosphere tends to contract after a decade
- With dust formation:
 - A dust shell is formed after 2-3 years, which is...
 - Highly opaque
 - Quickly expanding
 - Resulting in a photosphere that (after a decade) is...
 - Larger (~100AU)
 - Cooler (~500K)
 - Expands faster (60~80km/s)
 - Tend to be hotter near the poles

Limitations & future works

- Assumptions
 - Grey opacity
 - Absorption opacity only for $T_{\rm ph}$ calculations
 - Local Thermodynamic equilibrium
- Other limitations
 - Spatial resolution
- Future work includes adding wavelength-dependent radiative transport using MCMC

Thank you!