RUSPH

Building a 5P H astrophysical
simulation code in the Rust
programming language

Jacksen Narvaez
Supervisor: Dr. Terrence Tricco

February 15%, 2024

5th Phantom+MCFOST users workshop 2024 Simulation, Modeling and
Synthetic Data Lab

01 — Motivation

> (1977) Gingold & Monaghan / Lucy
~ 102 Particles

> Currently,
~ 107 Particles

High Performance Codes

... Not only speed, but safety.

02 — Rust

2006 - A personal side " The main focus is (memory) |
project of Graydon Hoare | Safety
2010 - Mozilla Sponsorship - Null pointers

> Memory Leaks

2015 - The first stable > Race conditions

release, Rust 1.0

 Efficient in performance. _ _

Not yet widely used in scientific computing...

But it is emerging! ﬁ
3

02 — Rust

Ownership:

Set of rules that the compiler
checks.

> Every value in Rust has an
owner.

> There can only be one owner at
a time.

> When the owner goes out of the

scope of the application, the
value is removed.

Borrowing:

The action of creating a
reference - obtaining some value
without taking ownership.

> You can have one mutable
reference or any number of
immutable references.

> References must always be
valid.

02 — Rust

" Owning a <book>: " You can show your <book> to a
- You can do what you want with it. friend.

02 — Rust

"You can offer to a friend a sento
write in the <book>.

02 — Rust: Parallel computing

Data-parallelism
library that converts
sequential
Crate rayon computations into
Version 170 parallel.

All Items

Modules
Structs
Enums

Functions

input: &[1i32]) -> 132 {
Iy = o 1: ~hanne that!

Crates

rayon Memory Safety

03 — The Code: Rusph

https://github.com/JackNarvaez/Rusph.git

’/
START Initial
—_ - —
RUSPH Conditions
Workflow

final
\
\
. A
\
: :
A 1
1
i 1
---> FEvolution —_—
t
+dt
Ev_t
/ ‘\F\-I \\I) =
Build Tree Calculate dt
Find h Update prts < ~BC's

\ Accelerations /

03 — The Code: Rusph

1. The B-Tree Algorithm

O(Nlog N)
Finding Neighbors
Worst Case | Best Case
b-tree O(nd) O(n)
octree O(nd) O(nlogn)

2. Artificial Viscosity

dva :_Z

1 A
. 205 [Cs at Cs,b — 5Vab rab] Vab " Tab S 0
Ysis = 1 0, Vb - Fap > 0
’

Uszgvab rabv Wab

3. Artificial Conductivity

du my
2 = g — Ve, (Ug —

Aa : aWa ha
dt = pay) Fa - VaWap(fa)

Cavelan et al. (2020)

04 — A look at our results

The toy star model

Monaghan & Price,
(2004)

/N

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
-06 !
I
I 00
—06 —02 02 06 | 0.0 02 04 06 08 10 10
I
I
' " " | - =03 w0
| 10
1.4 B i
I
I
| o8
I
! -
1.0 4 | 10°
: ne
| T
£
I o -
I g
0.6 N | 0
' I
| 1571
I
I
| 02
1 ~ ‘ ~32K
02} 190K ‘
! .
| o y Particles
| o0 02 04 o8 (3 Lo 1wt
! x
I
I

0.0

Density

Particles

0.0 0.2 0.4 0.6

04 — A look at our results

The Sedov blast wave

~170K
Particles

O i -

X ’ 4
1=0.01 r i "{.ﬁ_’.i"!\.‘«g"{ t=0.1
___¢ — n_z:;?:' % 2t
_”:ﬂ' 00 —=, - n
2000 = S — \ 1t
N ~170K ~350K
Particles 0 , ‘ . , Particles
V\ 0.2 0.4 0.6 0.8

11

04 — A look at our results

12

04 — A look at our results

Speedup: Strong scaling results for:

10?

Speedup
S

= Theorical

1K Particles
10K Particles
100K Particles

10°

10}
Ncpus

The Sedov Blast Wave Problem

10°

102_

=== Theorical ’
O 32K Particles .
O 262K Particles s
.-"
/;'O
’f
#
-”@
-
,e”’
.‘l
f”
,’Ef
f",
’,@
_r”"’
10° 10! 102
Ncpus

The Turbulent Gas Problem

* Tests performed on CAIR(IBM Power9 architecture)

13

04 — A look at our results

What about performance?

E C++
3 Julia
1 Rust

=

o
~
T

CPU Time (s)

—

o
e
T

311 516
N Particles

Basic SPH toy star model

05 — Summary

\4

Rust
> Prevents most memory errors.
> Performance advantages.

A\

Strong scaling results.

\4

Growing scientific ecosystem.

\4

Rusph future:
> Include Gravity.
> Improve performance.

15

T'hank you

Code is there for humans, not computers, to understand.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

