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01 — Motivation

> (1977) Gingold & Monaghan / Lucy
~ 102 Particles

> Currently,
~ 107 Particles

High Performance Codes

... Not only speed, but safety.




02 — Rust

2006 - A personal side " The main focus is (memory) |
project of Graydon Hoare | Safety
2010 - Mozilla Sponsorship - Null pointers

> Memory Leaks

2015 - The first stable > Race conditions

release, Rust 1.0

 Efficient in performance. _ _

Not yet widely used in scientific computing...

But it is emerging! ﬁ
3



02 — Rust

Ownership:

Set of rules that the compiler
checks.

> Every value in Rust has an
owner.

> There can only be one owner at
a time.

> When the owner goes out of the

scope of the application, the
value is removed.

Borrowing:

The action of creating a
reference - obtaining some value
without taking ownership.

> You can have one mutable
reference or any number of
immutable references.

> References must always be
valid.



02 — Rust

" Owning a <book>: " You can show your <book> to a
- You can do what you want with it. friend.




02 — Rust

"You can offer to a friend a sento
write in the <book>.




02 — Rust: Parallel computing

Data-parallelism
library that converts
sequential
Crate rayon computations into
Version 170 parallel.

All Items

Modules
Structs
Enums

Functions

input: &[1i32]) -> 132 {
Iy = o 1: ~hanne that!

Crates

rayon Memory Safety




03 — The Code: Rusph

https://github.com/JackNarvaez/Rusph.git
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03 — The Code: Rusph

1. The B-Tree Algorithm

O(Nlog N)
Finding Neighbors
Worst Case | Best Case
b-tree O(nd) O(n)
octree O(nd) O(nlogn)

2. Artificial Viscosity

dva :_Z

1 A
. 205 [Cs at Cs,b — 5Vab rab] Vab " Tab S 0
Ysis = 1 0, Vb - Fap > 0
’

Uszgvab rabv Wab

3. Artificial Conductivity

du my
2 = g — Ve, (Ug —

Aa : aWa ha
dt = pay ) Fa - VaWap(fa)

Cavelan et al. (2020)



04 — A look at our results

The toy star model

Monaghan & Price,
(2004)
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04 — A look at our results

The Sedov blast wave

~170K
Particles

O i -

X ’ 4
1=0.01 r i "{.ﬁ_’.i"!\.‘«g"{ t=0.1
_\__¢ — n_z:;?:' % 2t
\_”:ﬂ' 00 —=, - n
2000 = S — \ 1t
N ~170K ~350K
Particles 0 , ‘ . , Particles
V\ 0.2 0.4 0.6 0.8

11



04 — A look at our results
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04 — A look at our results

Speedup: Strong scaling results for:
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The Turbulent Gas Problem

* Tests performed on CAIR(IBM Power9 architecture)
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04 — A look at our results

What about performance?
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Basic SPH toy star model



05 — Summary

\4

Rust
> Prevents most memory errors.
> Performance advantages.

A\

Strong scaling results.

\4

Growing scientific ecosystem.

\4

Rusph future:
> Include Gravity.
> Improve performance.

15



T'hank you

Code is there for humans, not computers, to understand.
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