APR in Phantom Live adaptive particle refinement in Phantom

Rebecca Nealon and Daniel Price with acknowledgements to James Wurster, Jeremy Smallwood and Sahl Rowther

How do we simulate a fluid?

Grid approach

Discretise the domain into a static grid

- Fluid moves through the static boxes
- Easy to parallelise (can be very fast)
- Easy to implement magnetic fields, winds etc.
- Adaptive mesh refinement

SPH approach

Discretise the fluid onto moving particles

- Particles move with the fluid
- No boundaries or preferred direction
- Exact conservation of mass, linear and total angular momentum
- Adaptive particle refinement

It's an old idea ...

Reference (600,000)

APR (45,000 initially)

Kitsionas & Whitworth 2002

GIZMO: Hopkins 2015, Franchini et al. 2022

Chiaki & Yoshida 2015

How we do it: refinement levels

- Decide on a region that we want to increase the resolution in
- Split all the particles inside this region, increasing their refinement level
- Density is decided across both sets of particles
- Particles are able to safely move in and out of the region, transitioning between refinement levels

g
apr=2.

$$m_2 = m_1/2$$

 $h_2 = h_1 \left(\frac{m_2}{m_1}\right)^{1/3}$
e.g. Kitsionas and Whitwo
Barcarolo et
Chiron et

Bending et al. 2020

orth 2002 et al. 2014 Chiron et al. 2018

How we do it: de-refining

Direction of flow

How we do it: relaxing

Original arrangement

Feldman & Bonet 2008 Vacondio et al. 2013 López, Roose & Morfa 2012

Diehl et al. 2015

How we do it: relaxing

- Save the properties of all current particles
- Split/merge as required 2.
- For new particles: 3.
 - Calculate accelerations of new particles i. at their new locations
 - ii. Interpolate the acceleration at the location of the new particles from the original particles
 - Shift new particles by an amount that is iii. proportional to the difference between these accelerations
 - Repeat IV.

e.g. López, Roose & Morfa 2012 Vacondio et al. 2013 Kitsionas & Whitworth 2002

Uniform density box

Uniform density box

Uniform density box

Wave in a box

Wave in a box: kernels

Wave in a box: splitting conditions

+relaxing, +directional

Wave in a box: how r

The circumprimary disc in HD 142527

Figure 6. Shadows. Column density in the R1 orbit simulated with initial $R_{in} = 50$ au after 20 orbits at the observed orbital phase (right), showing the orientation of the (transient) circumprimary disc, compared to the scattered light (600-900 nm) the Zurich Imaging Polarimeter (ZIMPOL) polarization image (left; taken from fig. 1 of Avenhaus et al. 2017 ©AAS, reproduced with permission). Dotted line indicates the expected shadow from our simulated inner disc (right), which lies close to the orientation of the observed shadows (left).

The circumprimary disc in HD 142527

The circumprimary disc in HD 142527

Accuracy	Speed up	File size
0.002%	1.07-1.96x	22%

A circumplanetary disc

A circumplanetary disc

Accuracy	Speed up	File size
1.5%	2.4 - 4.4x	~30%

t = 246 yr

t = 493 yr

50 au

20 au

2

Our approach with APR

$[g/cm^2]$ log column density

Accuracy	Speed up	File si
To <0.1%	~6.4x	17%

How do I use it?

- 1. Compile with APR=yes
- 2. Setup your problem like normal
- 3. Check the apr_region.f90 file to find your preferred region or create a new one
- 4. Set the apr parameters in the *.in file
- 5. Run

```
Setting/updating the centre of the apr region (as it may move)
  1+
subroutine set_apr_centre(apr_type,apr_centre)
 use part, only: xyzmh_ptmass
 integer, intent(in) :: apr_type
          intent(out) :: apr_centre(3)
  real,
  select case (apr_type)
  case(1) ! a static circle
   dynamic_apr = .false.
    apr_centre(1) = 0.0
    apr_centre(2) = 0.0
    apr_centre(3) = 0.0
  case(2) ! around sink particle 2 - e.g. a planet
    dynamic_apr = .true.
    apr_centre(1) = xyzmh_ptmass(1,2)
    apr_centre(2) = xyzmh_ptmass(2,2)
    apr_centre(3) = xyzmh_ptmass(3,2)
  case default
    dynamic_apr = .false.
    apr_centre(:) = 0.
  end select
end subroutine set apr centre
```


APR in Phantom IS

Fast: around 1.07 -> 6.4x faster than globally high resolution (but problem dependent).

Accurate: all tests to within <1.5%, most much better than this.

Adaptable: allows for multiple regions, derefinement and setting the size of regions dynamically.

(It will be) compatible: currently only compatible with individual time steps, but plans for dust, MCFOST and self-gravity are on their way.