

GRAVITATIONAL INSTABILITY IN IRRADIATED DISCS

Sahl Rowther, Daniel Price, Christophe Pinte, Rebecca Nealon, Farzana Meru, and Richard Alexander

Sahl.rowther@leicester.ac.uk 🕀 sahl95.github.io

Science and Technology Facilities Council

When are Discs Gravitationally Unstable?

- In their youth, discs can be massive enough that the disc's self-gravity is important.
- When the disc mass is comparable to its host star ($\geq 10\% M_{\star}$), gravitational instabilities (GI) can occur resulting in spiral arms.

Introduction — GI Discs

When are Discs Gravitationally Unstable?

Toomre 1964

Observations of Gravitationally Unstable Discs

Andrews+ 2018, Huang+ 2018

Sahl Rowther

Tobin+ 2016, Reynolds+ 2020

4

Thermodynamics

Radiative Transfer

Models the disc realistically.
Slow and computationally expensive.

Sahl Rowther

Modelling the disc thermodynamics

β cooling

- + Fast and computationally inexpensive.
- Disc model is not consistent with expectations.

Simulating Gravitationally Unstable Discs with ^B Cooling

P du $= - (\nabla \cdot v) + \Lambda_{\text{shock}}$ dt 0

> PdV Heating

High Toomre Q

- Very little PdV or shock heating.
- The disc is free to cool until gravitational instabilities develop.

β cooling in action

Low Toomre Q

- Dense spiral structures have formed.
- PdV and shock heating become more important.

 β cooling in action

Heating and Cooling in Balance

- PdV and shock heating balance the cooling in the disc.
- The disc cannot fragment. Or become stable.
- It will remain gravitationally unstable with spiral arms.

 β cooling in action

Simulating Gravitationally Unstable Discs with Radiative Transfer

11

Coupling of PHANTOM + MCFOST

Sahl Rowther

CALCULATES THE TEMPERATURES

• Using the luminosity of the star, • Particle data from PHANTOM, PdV and Shock heating from PHANTOM.

MOVES THE PARTICLES

• Energy is constant between time-steps. • At the end of each time-step, MCFOST updates the temperatures.

Frequency of calculations

- The temperature is updated every 7.071 years.
- Ensures that particles do not evolve too much between temperature calculations regardless of where they are in the disc.

How Many Photons?

- Previous works (Nealon+ 2020, Borchert+ 2022a,b) have used 100 photons for every SPH particle. However, those discs were not as massive.
- Gravitationally unstable discs are much more massive, and hence very optically thick.
- Need a much higher number of photons to ensure every SPH particle is reached. If no photons reach, the temperature of the particle. is set to 2.73K. This results in a negative feedback loop resulting in artificial fragmentation.
- We use 5000 photons for every SPH particle.

14

Evolution of a $0.1M_{\odot}$ disc with Radiative Transfer

Sahl Rowther

Evolution of a gravitationally unstable disc with radiative transfer

Rowther+ (in prep)

Evolution of a $0.1M_{\odot}$ disc with Radiative Transfer

Sahl Rowther

Evolution of a gravitationally unstable disc with radiative transfer

Gravitational instabilities become weaker over time.

Rowther+ (in prep)

- Spiral structures are weaker.
- Disc becomes more stable over time.

Sahl Rowther

Comparison of the density structure

Radiative Transfer

Rowther+ (in prep)

Surface density (g/cm²)

- 10¹

- Spiral structures are stronger.
- Disc is in a steady state with spiral structures.

Sahl Rowther

β cooling

Rowther+ (in prep)

Comparison of the density structure

Surface density (g/cm²)

 -10^{1}

Evolution of Disc Instability

Radiative Transfer

- Disc is warmer. •
- Temperature is fairly constant.
- Q has a steady increase.

Sahl Rowther

Evolution of Disc Instability

β cooling

- Both surface density and sound speed evolve.
- Q eventually stabilises when heating and cooling are in balance.

Sahl Rowther

Sahl Rowther

21

Evolution of Disc Instability (At R=77AU)

Sahl Rowther

Initially, very little PdV and shock heating, so the disc just cools.

Evolution of surface density, sound speed, and Toomre Q

 $\pi G\Sigma$

(At R=77AU)

Sahl Rowther

Evolution of Disc Instability (At R=77AU)

Spirals weaken as the disc heats up.

Sahl Rowther

Cooling takes over once more as PdV and shock heating lessen

Evolution of surface density, sound speed, and Toomre Q

 $\pi G\Sigma$

24

Evolution of Disc Instability (At R=77AU)

Steady spiral structures as cooling is balanced by PdV and shock heating

Sahl Rowther

25

Sahl Rowther

Why is PdV and Shock heating more important for β cooling?

Temperature Structure

β cooling

- A colder disc.
- PdV and shock heating from the spirals are the source of heating.

Sahl Rowther

Comparison of the disc temperature

Temperature Structure

Radiative Transfer

- Disc is warmer.
- Stellar irradiation is the dominant source of heating.

Sahl Rowther

Comparison of the disc temperature

The Computational Cost

Radiative Transfer - 3e8 CPU seconds β cooling - 3e6 CPU seconds

Why Bother Simulating For Months?

Dust Dynamics

• The spirals are regions of pressure maxima where dust can be efficiently trapped and grow to form planetesimals.

Sahl Rowther

Dust concentration in spiral arms

Dust Dynamics

 Dust is kicked around by high amplitude spirals (Longarini+ 2023b).

Sahl Rowther

Dust concentration in spiral arms

Dust Dynamics

 The weaker spirals with radiative transfer could be more favourable to forming planetesimals.

Sahl Rowther

Dust concentration in spiral arms

Discs do not evolve in isolation

Sahl Rowther

Simulation of a Star Forming Cloud

Matthew Bate University of Exeter

Neighbours, companions, and chaotic accretion episodes all can alter the evolution of the disc

The Doom of Giant Planets

Planets migrate inwards rapidly within a few orbits in discs modelled with simple thermodynamics (Baruteau+ 2011)

Sahl Rowther

Planet-Disc Interactions

Survival of Giant Planets

- Spirals with radiative transfer are weaker.
- Could be easier for planets to open up gaps, slowing their migration.

Slightly better β cooling

Rowther+ 2020, 2023

Planet-Disc Interactions

Conclusions

- Discs can become gravitationally unstable with stellar irradiation.
- The contribution from PdV and shock heating is tiny. the temperature of the disc is instead set by the star, and is fairly constant. This is in contrast to β -cooling where disc is very cold and the spirals set the temperature.
- Hence, the morphology of the spiral structures is different. They are weaker, and less numerous. Additionally, the disc becomes more stable over time as the surface density of the disc decreases.

