Sarracen Roadmap

Terrence Tricco Memorial University of Newfoundland Canada INSERT SARRACEN LOGO HERE

5th Phantom + MCFOST Users Workshop

Sarracen

Sarracen is a Python-based analysis and visualization package for SPH.

- Hosted on PyPi (pip install sarracen)
- GPL 3 licence.
- Documentation hosted on readthedocs (installation, examples, API).
- Comprehensive unit tests.
- Open source contributions welcome!

Phantom File Reading

 Sarracen can read Phantom dump files (native binary format).

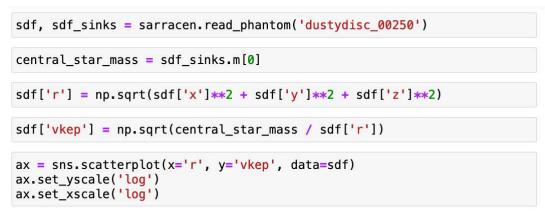
 Particle data is stored in a custom pandas dataframe (SarracenDataFrame).

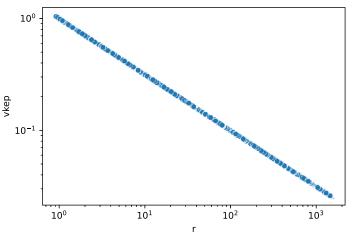
 Global variables are stored in a dict accessible within the data frame.

import sarracen

sdf, sdf_sinks = sarracen.read_phantom('dustydisc_00250')

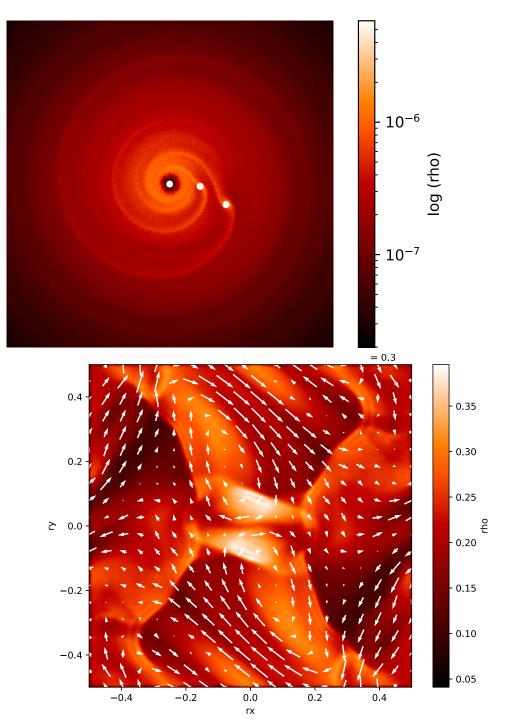
sdf


	itype	iorig	x	У	z	dustfrac	vx	vy	vz	h	divv
0	1	1	24.071157	34.700990	-9.799426	0.0	-0.122988	0.084390	0.001250	1.279343	0.000132
1	1	2	-16.809586	39.822064	10.325098	0.0	-0.135606	-0.058517	-0.001010	1.344829	-0.000487
2	1	3	-31.448560	143.168881	33.471512	0.0	-0.074776	-0.015854	0.000207	3.128934	-0.000085
3	1	4	-2.028744	-149.181369	-35.725110	0.0	0.074930	-0.001240	-0.001125	3.289851	0.000012
4	1	5	-93.489736	85.529352	2.238443	0.0	-0.055908	-0.062941	0.000656	1.965504	0.000022
1799995	7	1799996	17.313110	27.298153	0.093162	0.0	-0.147175	0.091926	-0.000311	0.193278	-0.005489
1799996	7	1799997	-62.532845	-41.111989	-0.020214	0.0	0.065162	-0.093672	-0.000124	0.388128	0.000159
1799997	7	1799998	49.120059	56.648474	0.057463	0.0	-0.088019	0.071694	-0.000016	0.310863	-0.000488
1799998	7	1799999	-72.487795	34.148759	0.021874	0.0	-0.043867	-0.101104	-0.000011	0.406251	-0.000011
1799999	7	1800000	78.909543	-0.012577	0.010850	0.0	-0.003001	0.110391	-0.000018	0.357142	-0.001144

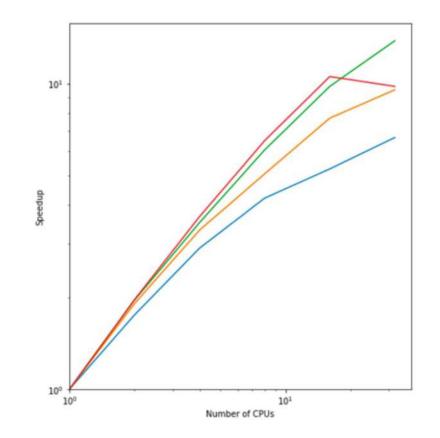

1639072 rows × 13 columns

sur . parallis
<pre>{'nparttot': 1800000.0, 'ntypes': 28.0, 'npartoftype': 1200000.0, 'npartoftype_2': 0.0, 'npartoftype_3': 0.0, 'npartoftype_4': 0.0, 'npartoftype_5': 0.0, 'npartoftype_6': 0.0, 'npartoftype_7': 600000.0, 'npartoftype_8': 0.0, 'npartoftype_9': 0.0,</pre>

Built upon pandas


- pandas give an intuitive, performant API for slicing, re-shaping, aggregating and transforming data.
- Data is stored in custom pandas DataFrames extended with several features specific to SPH data.
 - Detection of key particle properties (smoothing length, etc).
 - Density calculation from h and positions.
 - Visualization and interpolation.

Visualization


- 4 main rendering functions:
 - .render()
 - .lineplot()
 - .streamlines()
 - .arrowplot()
- Supports:
 - 2D/3D data,
 - planar cross-sections,
 - line of sight column-integrated views, and
 - the "exact" interpolation of Petkova+ 2018.

Performance

- Rendering functions:
 - Multi-threaded CPU or GPU.
 - Vectorized.
 - JIT compiled to machine code when first executed. (Means first time running may be a bit slower, but should be faster afterward.)

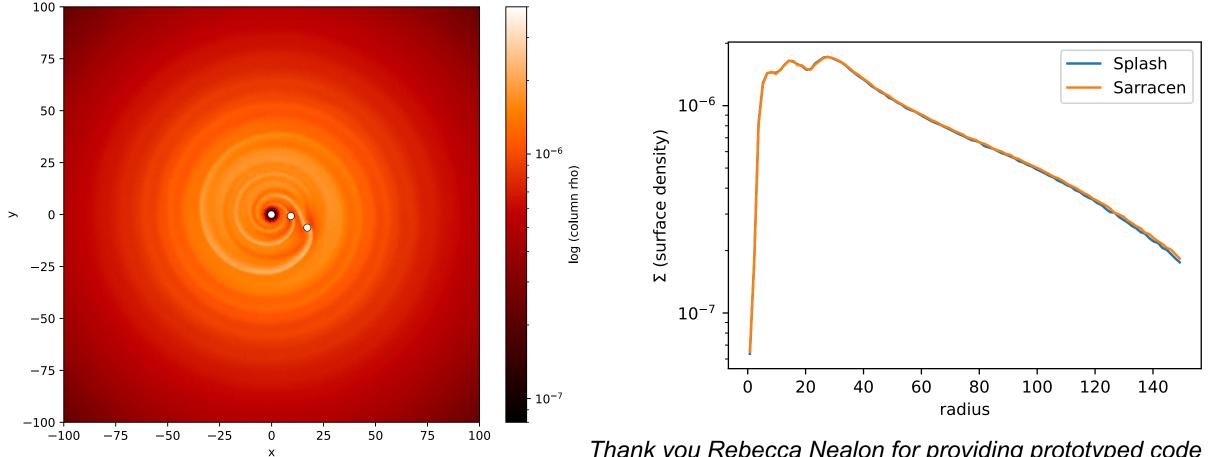
 Strong scaling measured up to ~20-30 CPU cores (particle count matters).

Current Development

- Current version is **1.2.3**.
- Fixed issues with 2-fluid dust/gas assigning correct particle masses.
 (*Thanks Jeremy Smallwood for the inspiration on how to fix this!*)
- Version 1.3.0 will be a significant release with two primary features:
 - 1. Accretion disc analysis tools.
 - 2. Writing Phantom dump files.
- Targeting ~May release.

Accretion Disc Analysis

- Surface density profile
- Angular momenta profile
- Scale height, H/R
- <h> / H


Accretion Disc Analysis

- Surface density profile
- Angular momenta profile
- Scale height, H/R
- <h> / H

sarracen.disc.surface_density()
sarracen.disc.angular_momentum()
sarracen.disc.scale_height()
sarracen.disc.honH()

- Status: 99% complete.
- Developed, tested, currently available on latest dev snapshot (github repo).
- May be further minor tweaks to the API, but nothing substantive.
- And need to implement proper unit tests.

Accretion Disc Analysis

Thank you Rebecca Nealon for providing prototyped code and testing the new disc analysis routines!

Writing Phantom Dump Files

- Prototype code has been developed to implement this.
- Two steps to productionize:
 - 1. Finalizing the API design.
 - sarracen.write_phantom(data=, sinks=)
 sdf.to_phantom()
 - 2. Thoroughly testing that it works.
- Status: 10% complete.
- Would open the door for moddump and writing initial setups.

- 1. Physical unit conversion.
 - Have explored the package pint, but this massively slowed everything down.

- 1. Physical unit conversion.
 - Have explored the package pint, but this massively slowed everything down.
- 2. Periodic boundary support.

- 1. Physical unit conversion.
 - Have explored the package pint, but this massively slowed everything down.
- 2. Periodic boundary support.
- 3. Time-series analysis(?)
 - Currently can only load data sets individually.
 - Time-series analysis requires manually looping to do what you need.

- 1. Physical unit conversion.
 - Have explored the package pint, but this massively slowed everything down.
- 2. Periodic boundary support.
- 3. Time-series analysis(?)
 - Currently can only load data sets individually.
 - Time-series analysis requires manually looping to do what you need.
- 4. Automated code style error checking (linting).

- 1. Physical unit conversion.
 - Have explored the package pint, but this massively slowed everything down.
- 2. Periodic boundary support.
- 3. Time-series analysis(?)
 - Currently can only load data sets individually.
 - Time-series analysis requires manually looping to do what you need.
- 4. Automated code style error checking (linting).
- 5. Cool logo!

Long-term Vision

Our goal is to implement and support commonly used analysis routines.

- 1. Achieve consistency of analysis across projects or between groups.
- 2. Reliability that analysis works correctly.
- 3. Provide a basis for specific, customized analyses.

Issues requesting features are welcomed.

Summary

- Disc analysis tools are available now in the dev version.
- Version 1.3.0 will release disc analysis tools + Phantom file writing. Anticipating release in the next few months.
- Get involved by reporting bugs or suggesting new features.
- We use our issue tracker extensively as part of our development cycle.
- PRs for code or documentation submissions are welcome.
- Thanks to Andrew Harris and everyone who has contributed to Sarracen in some way!