Infall as a Source of Substructures
In Brotoplanetary Oiscs

Tsainghua Lhiversity
jcalcno@mail.tsinghua.educn



AB Aurigae MWC 758 AS 209 HD 142527

Boccaletti+ 2020 Boccaletti+ 2021 Andrews+ 2018 Yamaguchi+ 2020

S . |. A Can be generated by
pira mSs, * Planetary/Stellar Very few disc substructures

RI ngS' Ga ps' Companions have been directly linked

* |nstabilities, icelines with confirmed companions

and CaV|t|eS » Gravitational Instability or phenomena
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Calcino et al. 2025, alsoin prep

Anatory of a Fall

Main research goal is to understand what infall doestoa
disc

* Hwdoesinfall inpact the s1ze? Anal mass, size,
eccentricity profile, Miat, etc.

* Hwdothe paranmeters of the infall affect the final
parameters of the disc?

 What substructures can we generate?

* Hwdothe spirals evolve?

 What does this look like in cbservations?

* Hwlong do the abservational signals last for?




Assunptions

Snplistic simulations
* Locally isothermal HOS

* Infall follows a parabalic orbit, with velocities set tothe
free-fall veloaity at each particlés particular radial
distance

* Infall isinitialized as an ellipse with some assued
sem-major and sem-mnor axis, a and b

* |nfall is added to a disc which has relaxed, evalved for
~10 orbits at the outer radius (~500 au)

e a =1000au b = 50auy Minf = 10% Mg;sc
* Telose = 100au




Tine evolution
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Infall induced spirals look like planet induced spirals
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* Infall induced spirals look quite like those generated by 21 78
massive planets 5% |
* Thelr pitch angle increases as a function of distance 8= dr s 1\
towards their launching paint. rdo &L I o

© T Planet location

BaeetaL201éhJ .

* Large beta: radial structure, lowbeta: more circular
structure



Sationary Spirals
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* Bvident for several 10°4 years



Disc Bvalution
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 Azmuthally averaged surface denaty, eccentriaity, and arg of periapsis

« Quter disc experiences eccentricity punping, which migrates inwards

» Largest eccentricities seen close to the aink, perhaps due to the region close to the sink initially being
depleted and then refilled with eccentricity material? Need to explore further:




The Kilo-au environment

* Secondary infall occurs fromthe
bound but highly eccentric gjecta

» Waird spiral pitch angles

* Not certain what causesit, but
large pitch angle changes appear
close tointersection of matenal

with drastically different angular
nomentum
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ABAUr » Loads of spiralsin scattered * Radially convergent notion tonards the
light and Qintensity center of a spiral armseen in scattered

+ Certral cavity in 1300 light, evidence for G
« Accretion rate ~10*7 Msun/yr
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Spiral Ams fromSelf-Gravity
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* Radial perturbations domnate over azmuthal at
disc mnor axis 14
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ABALr seens to have infall

Dec. offset (arcsec)

Lhiversity of Hawaii 22mtelescope dbservations of ABAUr
takenin1999

Arbient material seen on even larger scales

Simulations by Dullemond et al. 2019 can reproduce this
general structure assuming a cloudlet capture

Recent work by Jess Speedie traces the streamers hitting
the disc
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Infall Rerturbations

Theinfall here istwo sall

streamers inclined fromthe disc

md-plane

* Linestrace spiral amsinthe
surface denaity

* Abundant spiral ams

* Radial and vertical velocity
perturbations dominate
(azimuthal nat shown)
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Infall iIn ABAUr

Infall can reproduce

many featuresinthe

disc

* Abundant spirals

* Pertubed
kinematics

* Radially
convergent flons
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L
. ALMA B6
SO2 331-2200

* Infall is stochastic since it is seeded from a
turbulent environment - May make
understanding individual systems even more
difficult than it already was..

* We should understand better what
substructures can be generated in dust

* How does it affect planet formation and disc
evolution?

* Gl and infall are not mutually exclusive and
may be occurring in unison, but infall also

Induces a lot of ambiguity! Each of these systems has infall, and
substructures that are often associated with
planet-disc interactions.
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