Setting discs on fire with stellar flybys

2nd European Phantom code family users workshop Grenoble, France

Shot down in flames
Shot down in flames
Ain't it a shame
To be shot down in flames?
No! Shot

Nicolás Cuello, 2 June 2025

Take-away of this talk

- A broad range of dramatic accretion events may be linked to stellar multiplicity & stellar flybys with discs
- Flybys are not necessarily harmful for planet formation: context matters
- Flyby models may help to better interpret the emerging population of outbursting stars: link to be established

Part I:

Why should discs & planets care about stellar flybys?

Stellar multiplicity is unavoidable

- For simplicity, it is often assumed that disc & planet formation occur in isolation.
- Picture of the "typical scenario" needs to be revised
- John Hershel: mapped and characterised binary stars in the early XIX century
- Stellar multiplicity is key: drives accretion & precession, sets disc sizes & masses

"All stars are born as binaries or multiples" (Larson, 1970s)

Implication #1: Most (if not all) single stars were once part of multiple stellar systems

Implication #2: Ejection and stellar encounters are common in active SFRs

Useful flyby definitions & parameters

<u>Definition</u>: A flyby occurs whenever a star on a parabolic or hyperbolic orbit (e≥1) perturbs another star (w/ or w/o a disc)

<u>Types</u>: Prograde & retrograde; Non-penetrating, grazing, disc-penetrating flybys

) au iu e (2023)

Example: inclined prograde orbit

t=-1080 yrs

Cuello et al. (2019b)

Part II:

The powerful link between accretion and stellar flybys

Measuring flyby-induced accretion

Cuello et al. (2019b)

- Flyby orbital inclination critically depends on β: inclined prograde flybys
- But, there is a delay of ~100 yrs between the periastron and the <u>outburst...</u>
- Increasing intruder's mass speeds up the process: faster rise & higher peak
- NB: Thermal & magnetic effects not considered here
 - → Recent work by Vorobyov

$$L_{\rm acc} = \frac{1}{2} \frac{GM_*\dot{M}}{R_*} \qquad T_{\rm acc} = \left(\frac{L_{\rm acc}}{4\pi\sigma R_*^2}\right)^{1/4}$$

DISTANT FLYBY-TRIGGERED OUTBURSTS IN TENSION WITH THE FU ORIONIS OUTBURST

Changing the approach with FU Ori in mind

- Outburst reported in 1937.
 Rise time very short ~ 1 yr.
 Factor x 100 in accretion !!!
- M(FU Ori N) < M(FU Ori S):
 the less massive star (N)
 is the strong accretor
- Separation between the two stars, disc individual sizes, morphology, spiral, outflows
- Models w/ a short timescale:
 Projects led by Elisabeth
 Borchert (Monash, Australia)

Weber et al. (2023), Pérez et al. (2020)

What if we throw the star at the disc & we make material rain down on it?

Outburst during disc-penetrating flybys

Novelty: Phantom-MCFOST simulations, T field updated every few hydro steps

(c) 2021 Elisabeth Borchert

Flyby-induced FU Ori-like outburst

- As the disc-less intruder travels through the disc, it accretes material in a 3D fashion and forms a circumsecondary disc
- The rise time and maximum value of the stellar accretion are in agreement with FU Orionis

$$t_{\rm rise} = \frac{L(r_{\rm p})}{\sqrt{2GM/r_{\rm p}}}$$

This requires a very close flyby
~20 au, so less likely encounter

Borchert et al. (2022a)

What if both stars participating in a flyby have discs?

Fact #1: In FU Ori, both stars have discs (see observations by Pérez+2020 & Weber+2023)

Fact #2: For a given star, + likely to encounter stars which are around the same age

Does disc-disc-flyby orientation matter?

RELATIVE ORIENTATIONS MATTER FOR DISC MORPHOLOGY AND ACCRETION

Primary

Secondary

Total lum.

Different types of accretion events

Flybys move the ice-lines within the disc

- Changing encounter parameters and the circumsecondary disc rotation, the ice-surface moves!
- ****** scenario: prograde, no disc
- b 😰 scenario: retrograde, opposite
- Ice-surfaces are highly dynamic and evolve during the encounter, hence dust is reprocessed / cooked
- Check upcoming talk by P. Poblete

ICE SURFACES CAN BECOME HIGHLY ASYMMETRIC AND IMPACT DUST COMPOSITION

Part III:

Are stellar flybys a nightmare or a dream for planet formation?

Bestiary of stellar flybys with discs

Gallery from recent review on stellar flybys: Cuello, Ménard & Price 2023 Observations by: Mayama+,2010/20 Weber+2023, González-Ruilova+2020, Winter+2018, Ménard+2020, Kurtovic+2018, Cabrit+2006, Rodriguez+2018, Takami+2018, Dong+2022

Our current list of suspects

Name	Distance	Mass ratio: $q = M_2/M_1$	Projected sep.	$r_{\rm flyby} = r_{\rm peri}/R_{\rm disc}$	Orbit: β , e
SR 24	$100 \pm 2 \; \mathrm{pc}$	0.95/1.4 = 0.7	520 au	~ 1	Prograde, e ?
ISO-Oph 2	$134 \pm 8 \; \text{pc}$	0.08/0.5 = 0.16	240 au	~ 2.5	Prograde, e ?
HV & DO Tau	$138 \pm 1 \text{ pc}$	0.5/1.35 = 0.37	12 600 au	$285/320 \approx 0.9$	$\beta = 28^{\circ}, e \sim 1$
UX Tau	$142 \pm 1 \; pc$	0.2/1.0=0.2	383 au	$100/90 \approx 1.1$	$\beta \approx 45^{\circ}, e \sim 1$
AS 205	$142 \pm 3 \; {\rm pc}$	1.28/0.87 = 1.47	168 au	~ 1	Prograde, e ?
RW Aur	$156 \pm 1 \; \mathrm{pc}$	0.9/1.4 = 0.64	234 au	$70/60 \approx 1.2$	$\beta \approx 20^{\circ}, e = 1$
FU Ori	$408 \pm 3 \text{ pc}$	1.2/0.6=2.0	204 au	20/50 = 0.4	$\beta \approx 45^{\circ}, e \gtrsim 1$
Z CMa	$1125 \pm 30 \text{ pc}$	1.8/6.0=0.3	4725 au	$3000/840 \approx 3.6$	$\beta \approx 45^{\circ}, e \sim 1$
Sag. C cloud	8100 pc	3.2/31.7 = 0.1	$\approx 8000 \text{ au}$	$2000/3000 \approx 0.7$	$\beta \approx 45^{\circ}, e \sim 1$

Some related questions in light of the previous content

Q#1: What happens to the material captured around the intruder star?

Q#2: Can flybys help to form planets and reprocess solids within protoplanetary discs?

Formation of 2nd generation discs

Smallwood et al. (2024)

THE SECONDARY DISC INCLINATION IS TWICE THE INTRUDER'S ORBITAL INCLINATION

Accretion onto an existing disc

Smallwood et al. (2024)

THE ACCRETED MATERIAL IS FORCED TO ACCRETE ONTO THE PRE-EXISTING DISC

Flyby-induced spirals

Smallwood et al. (2023)

Spirals in the disc can act as dust traps and typically live for some kyrs

Density & eccentricity increase

Smallwood et al. (2023)

Grazing flybys are able to concentrate and excite particles in the disc

Planet formation aided by flybys

- Flybys cause tidal truncation and lead to steeper surf. dens. profiles
- Dust drift & traps: streaming inst.?

Cuello et al. 2019b

- Disc-penetrating encounters lead a dramatic increase in T
- Dust particles > 1000 K: CAIs?

Price, Borchert, Cuello & Pinte (in prep?)

FOR RESONANT PLANETARY CHAINS PERTURBED BY STELLAR FLYBYS: CHECK RECENT WORK BY CHARALAMBOUS, CUELLO & PETROVICH (2025)

Epilogue:

Flybys, accretion & planets

A nightmare or a dream?

- Flybys (=gravitational vandals) are a natural way to trigger outbursts & substructure around young stars
- Flybys (=cosmic midwives) trigger gravitational instabilities, concentrate dust (mix & cook), accelerate PF.
- Important to consider both discs (rotation matters), radiative effects & "chemistry" during the flyby
- Search for a more systematic link between flyby candidates and recent/ ongoing outburst. For instance: Are outbursting stars the norm rather than the exception? Outbursting Sun?

Bonus slides:

Extra content on flybys

Dust dynamics during flybys

Due to radial drift, different dust species have different cross sections

Dust response depends on Gas Coupling & Flyby parameters

Connecting hydro to observations

- Models
 ↔ Observations
 - Hydrodynamics w/ PHANTOM Radiative transfer w/ MCFOST NB: Gas & Dust separately
- Emission at ≠ λ: IR, mm, lines
 Catalogue of synthetic obs.
 - → Search for perturbers
- Analogy: flyby = crime scene Perturber has already left or (if lucky) caught in the field of view

INTERPRETATIVE FRAMEWORK FOR RECENT OBSERVATIONS OF PERTURBED DISCS

A flyby in a quadruple stellar system

- Inclined prograde flyby
 → Spirals + Bridge
- Mass ratio M_C/M_A=0.2
 RP = 100 au, R_{out} = 90 au
 → Grazing encounter
- Disc capture scenario
 Disc misalignment
 2nd generation PPDs ?
- Recent works (incl. NC)
 by Borchert+2023 and
 Smallwood+2023, 2024

Ménard, Cuello et al. (2020, SPHERE consortium)