Cooling routines for AGB winds Towards the understanding of Long Secondary Periods

Davide Dionese

Supervisors: Lionel Siess Dorota Skowron

UNIVERSITÉ

Long Secondary Period (LSP)

- Observed in $\frac{1}{3}$ of evolved solar-type stars
- Period: 250-1400 days
- Amplitudes up to 0.8 magnitudes
- Decline faster than rise

Binary hypothesis

Evolved star + panion hidden in dust cloud,

Sub-stellar companion hidden in dust cloud, Originally a **planet**

Wind models and cooling issues (setup "wind")

Cooling:

• Allows larger densities around the companion (accretion disk)

• As of now: only HI cooling (only high temperatures)

Equilibrium chemistry

Partial pressure of a molecule made of elements A, B, C

$$\frac{p_{A_aB_bC_c}}{p^{e}} = \left(\frac{p_A}{p^{e}}\right)^a \left(\frac{p_B}{p^{e}}\right)^b \left(\frac{p_C}{p^{e}}\right)^c \exp\left(-\frac{\Delta G_f^{e}}{RT}\right),$$

Gibbs free energies derived from JANAF tables (Fit from Sharp and Huebner, 1990)

Network extended to lower temperatures

New cooling rates

From Glover et al. 2012

H2 rot / vib	ОН	H2 CIE					
Atomic (HI)	H2O (H2O18) rot / vib	CO (C13O, CO18) rot/vib					
CI	OI	Sil					

C/O = 1.7 Solar abundances

Most relevant coolings

Cooling rates from Woitke (1996)

C/O = 1.7 Solar abundances

	1.7e+04	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic.	atomic
	1.3e+04	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic
	1.0e+04	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic
	8.0e+03	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
	6.2e+03	atomic	atomic	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
	4.8e+03	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
0	3.8e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
em	2.9e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
-	2.3e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib			
	1.8e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib			
	1.4e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib				
	1.1e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib			H2_vr					
	8.3e+02	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_rot				H2_vr	H2_vr			
	6.4e+02	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_rot					CO_rot	H2_vr		H2_vr	
	5.0e+02	H2O_vib	H2O_vib		H2O_rot	CO_rot	G0_rot	CO_rot	CO_rot	œ_rot	CO_rot	CO_rot	CO_rot	H2_vr	H2_vr	
		3	3	5	<u>``</u>	<u>></u>	50	<u>_</u>	6	08	<u>`</u> 0	6	6	్రా	OA	OA
	6.3°	$\tilde{\mathcal{A}}_{\mathcal{A}}^{\mathcal{B}}$, , , , e	, oe	, 0e	,oe	, oe	~~? ^e	~_~ ⁶	ix Je	° G?°	$\tilde{2}$, , , , e	, oe	$\tilde{2}, 0^{e}$	×
	0	7	V	,	7	V		vn (F	l der	nsitv)	Ũ	,	V		<i>y</i>	

C/O = 0.5

C/O = 0.5

1.7e+04	atoms														manac
1.3e+04	alternist:														atomic
1.0e+04	MOTION														atomic
8.0e+03	(atomic														Digina
6.2e+03	Mome														C8_9000
4.8e+03	atoms														0,000
3.8e+03	CD_em														CR. This
2.9e+03	60 Mi														D_fine
2.3e+03	60, im														-
1.8e+03	co.ym														0.00
1.4e+03	m, in														-
1.1e+03	00.sm														H2_se
8.3e+02	00,00						120								12,0
6.4e+02	CD_em					10.50									80_jet
5.0e+02	100,50														10.11
	3	3	S2	ŝ,	\$ }	20	°	08	.08	.0 ¹	00	.00	ూ	OA	.0A
6.35	×	ex se	~_0e	× 0°	× oe	, oe	~,9e	×	,2e	, re	~.3°	, Se	, oe	~_0e	×
Ũ	<i>y</i>	~		<i>y</i>	~	**	vn (F	d dor	ncity)	5	,	-	,	,	

	1.7e+04	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic
	1.3e+04 ·	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic
	1.0e+04	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic
	8.0e+03	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
	6.2e+03	atomic	atomic	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
	4.8e+03	atomic	atomic	atomic	atomic	atomic	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
0	3.8e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
emp	2.9e+03	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	Ol_fine	Ol_fine	Ol_fine	Ol_fine	Ol_fine
Η	2.3e+03	H2O_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib		Ol_fine	Ol_fine
	1.8e+03	H2O_vib	H2O_vib	H2O_vib	H2O_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib	CO_vib		CO_rot	Ol_fine
	1.4e+03	H2O_vib	H2O_vib	H2O_vib	H2O_vib									co_rot	Ol_fine	Ol_fine
	1.1e+03	H2O_vib	H2O_vib	H2O_vib	H2O_vib											H2_vr
	8.3e+02 ·	H2O_vib	H2O_vib	H2O_vib							H2O_rot		H2O_rot		H2_vr	H2_vr
	6.4e+02	H2O_vib	H2O_vib	H2O_vib				H2O_rot					H2O_rot		H2_vr	H2_vr
	5.0e+02 ·	H2O_vib	H2O_vib	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2O_rot	H2_vr	H2_vr
		5	3	52	<u>``</u>	<u>`</u>	5	°	6	6	6	60	6	්	OA	OA
	6. ³⁶	~. ³⁶	, ise	i soe	~.0e	$_{2,0}^{e}$, oe	~,9e	^6 ^e	, Je	, ³⁶	~. ³⁶	, ise	, oe	~.0e	,
	5	,			,	v	•	, yn (F	l den	sity)	Ū	,	v		,	0

Cooling: how and where?

$$\rho \dot{u}|_{\Lambda} = \begin{cases} 0, & T \leq T_0 \\ -\Lambda n^2 (T - T_0)/T_0, & T_0 \leq T \leq \frac{1}{2} (T_1 + T_0) \\ -\Lambda n^2 (T_1 - T)/T_0, & \frac{1}{2} (T_1 + T_0) \leq T \leq T_1 \\ 0, & T_1 \leq T \end{cases}$$

An analytical solution

Creasey et al. 2011

Moving shock

VS

Fixed analytical solution

Shifted according to maximum temperature

Integration methods

Isn't the exact method supposed to be exact?

Issues with piecewise cooling + exact method

$$\Lambda(T) = \Lambda_k \left(\frac{T}{T_k}\right)^{\alpha_k} \qquad T_k \leqslant T \leqslant T_{k+1}, \qquad (A4)$$

Townsend 2009

 T_0

<

 $\frac{T_0 + T_1}{2}$

 T_1

Ad hoc shifting

Conclusions

- Refinement of equilibrium chemistry
- Introduction of new cooling rates:

Path to improved description of AGB outflows

- Development of the shock tube test
- Comparison between methods (partially inconclusive)
- Other factors play a major role The implicit method seems the safest choice