
GPUs in Space: Extending GPU 
Support for SPH

Student: Andrew Harris
Supervisor: Dr. Terrence Tricco

NASA: James Webb Space Telescope, NVIDIA: RTX 2080 Technical Photography

1



The Cost of SPH

2



The Cost of SPH

- Sarracen is a Python-based tool 

performing analysis and visualization of 

SPH data.

- Built in collaboration with Dr. Tricco

- Open-source, and available for installation 

on PyPI!

Sarracen

3



The Cost of SPH

- The number of GPUs available on 

large-scale computing systems is 

increasing year-over-year.

- Astrophysical SPH codes should take 

advantage of these resources, to enable 

larger and more efficient simulations.

The Computational Cost of SPH

4

top500.org: % of top 500 supercomputers with GPUs. Graph credit: Dr. Tricco

http://top500.org


AMD MI250X: 4x 14080 cores

GPU Challenges

On Adastra (CINES, accelerated nodes):

The Challenge with GPUs

Image Credits: AMD

5

AMD 7A53: 64 cores



- SPH computations must be distributed amongst the available cores.

- In an ideal world, all cores have the same amount of work.

Compute Time

Cores

The Challenge with GPUs

6



- If we divide computations by region, we 

end up with an uneven workload, since 

particle density can vary greatly 

throughout the simulation.

- Dividing work by number of particles 

does not work either, since particles in 

dense regions have more neighbours to 

consider.

Density Changes

7



- A particle’s neighbours are always 

changing. This makes the amount of work 

variable and hard to predict.

- The workload must be rebalanced across 

cores as the simulation evolves.

Moving Particles

8



- A modern astrophysical code that operates 

on clusters of GPUs.

- Highly optimized for speed, with major 

algorithmic optimizations.

9

Logo from: https://shamrock-code.github.io/

Shamrock

https://shamrock-code.github.io/


10

Shamrock Performance

Performance scaling of Shamrock on the CINES Adastra supercomputer



- Across a simulation, some particles may 

need to update more frequently than 

other particles.

- For example: Dense vs. Sparse regions

- We can give each particle an individual 

timestep, to only update particles as 

required.

11

Variable Timesteps

Breakdown of particle timestep bins in Phantom



- Particles with a more frequent timestep 

may be difficult to split over the cores of a 

GPU.

- The more frequent timesteps could 

significantly bottleneck the performance.

12

Potential Issues

AMD MI250X: 14080 cores

?



- Neighbouring particles must be within a 

specific number of timesteps for numerical 

accuracy (adjustable parameter)

- Therefore, the computational load of any 

particle can rapidly change.

- In Phantom, this is known as a particle 

“waking up” its neighbours.

13

Potential Issues

From: (Saitoh & Makino 2009)



- Create a test bench single-GPU code to 

test variable timesteps.

- The code will use OpenMP for parallelism, 

so the result can be easily ported back to 

Phantom.

14

Next Steps

Screenshots from: https://www.openmp.org/uncategorized/openmp-45-specs-released/

https://www.openmp.org/uncategorized/openmp-45-specs-released/


- The codes we have discussed only work 

on either the CPU or GPU.

- It is possible that certain types of physics 

could be deferred to the CPU on a GPU 

code.

- The major challenge here would be the 

memory transfer overhead between the 

CPU and GPU.

15

Task-based parallelism breakdown in Swift [7]

Bonus Challenge: Hybrid CPU + GPU Code



Thank you!

16


