How do tidal disruption events shine in optical and radio?

Fangyi (Fitz) Hu Supervisor: Daniel Price, Ilya Mandel Collaborator: Adelle Goodwin, Re'em Sari, Kimitake Hayasaki Monash University 6 Jun 2025 @ 2nd Phantom European workshop

What is tidal disruption events? A free way to murder stars

- Stars approach supermassive black holes
- Tidal force/ diverging geodesics
- Tidal radius r_t
- Disrupted into a stream
- Fallback to form accretion disk and launch outflows

[Rees 1988]

Solutions...Really?

- Tidal compression / nozzle shock [Ryu et al. 2023]
- Self-collision [Lu & Bonnerot 2020]
- Reprocessing layer [Loeb & Ulmer 1997] / [Metzgar & Stone 2016]
- Cooling envelope [Metzgar 2022] / [Sarin & Metzgar 2024]
- Stream-disk interaction [Steinberg 2024]

Hydrodynamics simulations Tidal disruption events

- Phantom General relativistic smoothed particle hydordynamics
- MESA real $1 M_{\odot}$ solar star
- $10^6 M_{\odot} \, {\rm SMBH}$
- Eccentric e = 0.95, deep encounter $\beta = r_t/r_p = 5$ orbit

Hydrodynamics simulations

•

(c) 2023 Fangyi Hu

log column density [g/cm*]

[Hu *et al.* 2024]

Hydrodynamics simulations Tidal

t=0 days

.

Hydrodynamics simulations Tidal

0 days

Hydrodynamics simulations Outflow interaction with circumnuclear material

9

- Shock amplifies magnetic field
- Free electrons form synchrotron/radio radiations
- Spherically symmetric CNM shell
 - Power law density profile $\rho \propto r^{-1.7}$ (Cendes *et al.* 2021)
 - $\rho_0 = 5.03 \times 10^{-17}$ g cm⁻³, $r_0 = 10^{15}$ cm ≈ 66.8 au
 - Stationary, cold T = 10 K

Hydrodynamics simulations Outflow interaction with circumnuclear material

t=0 days

Radio synchrotron shocks Properties

- Radius, velocity \approx obs \bullet
- Energy range \ll obs ullet
- Low CNM density \rightarrow large initial rad, vel

 $\beta = 1, e = 0.95$

 $\beta = 5, e = 0.95$

 $\beta = 5, e = 0.95, 1M_{\odot}$

- $\beta = 5, e = 0.95, 10^{-3} M_{\odot}$

 $\beta = 3, e = 1$

 $\beta = 5, e = 0.95, 0.01 M_{\odot}$

 $\beta = 5, e = 1$

ASAASN-14li(c)

ASAASN-14li(s)

CNSS J0019

AT2019azh(c)

AT2019azh(s)

eRASSt J2344(c)

eRASSt J2344(s)

AT2019dsg(s)

AT2020opy(c)

AT2020opy(s)

AT2020vwl(c)

AT2020vwl(s)

.

Ray tracing

- Post-processing
- Radiative transfer equation
 - $I_{n+1} = I_n e^{-\tau_n} + S_n (1 e^{-\tau_n})$
- Optical
 - S_{ν} blackbody
 - au electrion scattering
- Radio
 - S_{ν} slow cooling synchrotron (Sari *et al.* 1998)

1

• τ_{ν} - self-absorption

Optical Lightcurve

$ \begin{array}{c c} & 100k, \beta = 1 \\ & 100k, \beta = 5 \\ & 1M, \beta = 5 \\ & - 1M, \beta = 5, 0.1\kappa_{es} \\ & \cdots & 1M, \beta = 5, 0.01\kappa_{es} \\ & - 1M, \beta = 5, \kappa_{therm} \\ & 1M, \beta = 5, \theta_{\chi} = 60^{\circ} \end{array} $	$ 1M, β = 5, θ_x = 210^\circ 1M, β = 5, θ_y = 60^\circ 1M, β = 5, θ_y = 210^\circ 10M, β = 5 AT2018lni AT2019qiz AT2019lwu$	AT2018lna AT2018hyz AT2019azh AT2018iih AT2019cho AT2018zr	* * * * *	AT2019meg AT2018hco AT2019bhf PS1-10jh ASASSN-14li ASASSN-18jd
---	---	---	-----------	---

[Hu *et al.* 2024]

Radio Spectra

[Hu et al. 2025 submitted]

TDE nozzle shock

- Nozzle shock at pericenter \bullet
- Heat dissipation ullet
- Convergence issue ullet

TDE nozzle shock

- Adaptive particle refinement
 [Nealon & Price 2025]
- Split particles before second passage of pericenter
- Increase resolution for a convergent result

Conclusions

The models are correct!!

- GR hydro simulations of TDEs and outflow interaction with CNM
- Ray tracing to find spectra/lightcurve
- Results within magnitudes of optical & radio observations despite random parameters/simple setup
- Fangyi (Fitz) Hu, Daniel J. Price, Ilya Mandel, 2024, ApJL, 963, L27

Too much photosphere!

Separation between absorption & scattering photosphere

Optical Opacity

(c) 2023 Fangyi Hu

	3.65 days $\kappa = \kappa_{\rm es}$			3.65 days $\kappa = 0.1 \kappa_{\rm es}$			3.65 days $\kappa = 0.01 \kappa_{\rm es}$
?						<u>_</u>	
' 50 au '	3.5 4 4.5 log temperature [K]	(c) 2023 Fangyi Hu	50 au	3.5 4 4.5 log temperature [K]	(c) 2023 Fangyi Hu	50 au	3.5 4 4.5 log temperature [K]

Optical Spectra

[Hu et al. 2024]