Towards exascale simulations with Shamrock

Yona Lapeyre-Belaredj

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Discs with complex geometries

TW Hydrae by HST

M106 by HST

HH221 by JWST

M87 by HST

The Bardeen-Petterson effect

SPH Simulations: Nealon et. al. (2015)

100,000 particles

1 million particles

- —> When does the disc break?
- —> At what radii?
- —> Observational signature?
- —> accretion rate?
- —> instabilities at very small scales?

10 million particles

We need resolution!!

Formation of jets (from black holes)

Blandford and Znajek (1977) Blandford and Payne (1982)

Example: grid simulation using Pluto

(2020)

—> Jet stability and collimation? —> Influence of magnetic reconnection? Turbulence? G. Maia et. Al. 2023

Shamrock: (magneto-)hydro code for exascale architecture

El Capitan Peak 2.74 exaFlops/s

https://github.com/Shamrock-code/Shamrock

David--Cléris, Laibe, Lapeyre (2025)

8.73e + 096.76e + 095.34e + 09

1.38e + 09

Which ingredients to simulate a disc?

Disc setup:

Pressure prescription:

Viscosity prescription:

External forces:

Monte-Carlo generator + warp modifier

Adiabatic, isothermal, locally isothermal (LP07), Locally isothermal (Farris 2014)

Constant, MM97, CD10, disc

Point mass, Lense-Thirring

8

Test: wave-like regime

(c) 2025 Lapeyre Yona

-6

Test: Lense-Thirring precession

(c) 2025 Lapeyre Yona

-----9

Test: diffusive regime

$$\frac{\partial \mathbf{L}}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[\frac{R^{1/2}}{\Sigma} \frac{\partial}{\partial R} \left(\nu_1 \Sigma R^{1/2} \right) \mathbf{L} \right] \\ + \frac{1}{R} \frac{\partial}{\partial R} \left[\left(\nu_2 R^2 \left| \frac{\partial \mathbf{l}}{\partial R} \right|^2 - \frac{3}{2} \nu_1 \right) \mathbf{L} \right] \\ + \frac{1}{R} \frac{\partial}{\partial R} \left(\frac{1}{2} \nu_2 R \left| \mathbf{L} \right| \frac{\partial \mathbf{l}}{\partial R} \right)$$

Bardeen-Petterson effect on a 100M particle disc

(c) 2025 Lapeyre Yona

Bardeen-Petterson effect on a 100M particle disc

(c) 2025 Lapeyre Yona

Ideal MHD solver in Shamrock

$$\frac{d\mathbf{B}}{dt} = -\mathbf{B}(\nabla \cdot \mathbf{v}) + (\mathbf{B} \cdot \nabla)\mathbf{v} - \nabla\psi$$
$$\frac{d\psi}{dt} = -c_h^2(\nabla \cdot \mathbf{B}) - \frac{\psi}{\tau}$$

Same method as in Phantom: constrained hyperbolic-parabolic divergence cleaning

Ad break!

A friendly interface

```
import shamrock
     model = shamrock.get_Model_SPH(context = ctx, vector_type = "f64_3", sph_kernel = "M6")
     cfg.set_artif_viscosity_ConstantDisc(alpha_u=1, alpha_AV=1, beta_AV=2)
 5
     cfg.set_eos_isothermal(cs=1)
 6
     cfg.set_units(si)
8
     gen_disc = setup.make_generator_disc_mc(
 9
10
              part_mass = pmass,
             disc_mass = disc_mass,
             r_in = rin,
12
13
              r_out = rout,
14
              sigma_profile = sigma_profile,
             H_profile = H_profile,
15
              rot_profile = rot_profile,
16
              cs_profile = cs_profile,
              random_seed = 666
18
19
20
21
22
     setup.apply_setup(warp)
23
24
     while present_t < t_target:</pre>
         present_t += dt
25
         model.evolve_until(present_t)
26
```

warp = setup.warp_disc(setup2warp= gen_disc, Rwarp= Rwarp, Hwarp=Hwarp, inclination=inclination, posangle=0.)

Friendly visualization tools

Splash

19	sdf = read
20	sdf.descr:

x	У	z
964434.000000	964434.000000	964434.000000
0.003748	0.011469	0.000054
4.497603	4.495797	0.327262
-16.072591	-16.404245	-2.319049
-3.142610	-3.131178	-0.174549
-0.000939	0.010260	0.000145
3.144735	3.156347	0.174759
15.934542	15.972999	2.413390
	x 964434.0000000 0.003748 4.497603 -16.072591 -3.142610 3.144735 15.934542	xy964434.000000964434.0000000.0037480.0114694.4976034.495797-16.072591-16.404245-3.142610-3.131178-0.0009390.0102603.1447353.15634715.93454215.972999

(c) 2025 Yona Lapeyre

Native

d_shamrock("disc_0000.sham") ibe()

A very friendly team of developers

Shamrock d	ocumenta	ation	٩	Q Search	Feat	ture list		
V					Shamrock		Shock handli	ng mecl
Shamrock Mkdocs documentation Doxygen documentation Features	>	Ch.	0 700		Mkdocs documer Doxygen docume Features Feature list SPH model	ntation entation ~ >	Feature Constant α_{AV}	Statu
Physical models Develloper Doc Sycl guide C++ guide	> > >	New Su	am	rock	User Documentat Physical models Develloper Doc Sycl guide	tion > > > >	ΜΜ97 α _{AV}	Produ
		Welcome to the documentation of the Shamroo We can run some SPH, AMR, but not only that!	ck code!		C++ guide	>	α-disc viscosity	Ok
		<u>:</u> () Quickstart	n Python f	frontend			Equations of	state
		Configure and run your first simulation using Shamrock	You don't ne whatever, th	ed to know about GPUs, C++ e frontend just require the use			Feature	
		ightarrow Getting started	of python \rightarrow Python fr	ontend documentation			Isothermal	

Timothée David-Cléris

Shamrock python bindings
Section Navigation
Shamrock install info utility functions
Open a phantom dump
Shamrock Gaussian generator
Sedov blast solution
Simple exemple of unit usage
Shamrock math derivatives functions
SPH projected kernels
Start a SPH simulation from a phantom dump
Binary orbit functions
Testing AABB intersection routine
Paving functions
Shearing box in SPH
Testing Ray AABB intersection
Taylor green vortex in SPH
Basic disc simulation

♠ > Shamrock's exemple gallery

lome page Python API Exemples

Shamrock's exemple gallery

Below is a gallery of examples

The time to generate the exemple can be seen in Generation time

- -> (almost) production ready disc setup!
- —> (ideal) MHD solver still in testing phase.
- —> Shamrock currently use for physics (Bardeen-Petterson simulations)

Happy to help you simulation your favorite disc with Shamrock! Thank you!

