

Stellar feedback in Molecular Clouds

Science and Technology Facilities Council

Semi-confined Supernova in HII region bubbles

and how it differs to 1-D SN models in galaxy sims

Cheryl Lau

Prof. Ian Bonnell University of St Andrews, Scotland, UK

Stellar feedback

Supernovae

Jets

- Photoionization
- Stellar winds

Radiation pressure

The largest source of energy and momentum in the ISM

- Sweep gas into shells and pillars
- Create bubbles
- Heats gas to hinder fragmentation

Stellar feedback

- Sustain turbulence
- Disperse molecular clouds to regulate star formation
- Launch galactic winds to halo

How much of the SN energy is transferred to the ISM?

SNe are always affected by pre-SN feedback

But usually not resolved in galaxy sims...

Sub-grid models for galaxy sims

Sub-grid models are **prescriptions / recipes** of impact of feedback on small-scales

Otherwise.... lack of resolution leads to numerical overcooling -

- Feedback energy is distributed to too much mass
- Cannot resolve the hot phase of ISM
- Becomes subjected to high cooling rates

Current SN sub-grid models (typically)

Based on **spherical blast wave** solutions

(Sedov/Snowplough)

+ cooling+ stellar models etc.

+ Interaction with pre-SN feedback bubble

E.g. Wind-blown bubbles, HII regions

Current SN sub-grid models (typically)

+ cooling + stellar models etc. E.g. Wind-blown bubbles, HII regions

Before SN: HII region in GMC

Before SN: HII region bubble in GMC

Before SN: Ionized channels in GMC

Before SN: Ionized channels in GMC

Before SN: Ionized channels in GMC

Now with channels... Inject supernova

Column density

Column densities seen from SN progenitor

Internal energies seen from SN progenitor

Internal energies seen from SN progenitor

Breaking the symmetry

What is the difference in energy/momentum output between a typical 1-D spherical blast model and ...

if we don't resolve it?

An idealized model

An idealized model

An idealized model

Analytical model of free-field SNe

Sedov solution – velocity $v_{\rm shock}$ as a function of $r_{\rm shock}$

 $v_{\text{shock}} = \frac{2}{5} \xi_0^{5/2} \left(\frac{E_{\text{SN}}}{\rho_{\text{env}}}\right)^{1/2} r_{\text{shock}}^{-3/2}$

Assume it remains self-similar

Gas properties in post-shock region:

$$\frac{v'}{v_{\text{shock}}} = \frac{\eta}{\gamma} + \left(\frac{\gamma - 1}{\gamma^2 + \gamma}\right) \eta^a \quad \text{with Rankine-Hugoniot relations}$$

$$\frac{\rho'}{\rho_{\text{env}}} = \left(\frac{\gamma + 1}{\gamma - 1}\right) \frac{\eta^b}{\gamma^c} \left(\gamma + 1 - \eta^{a-1}\right)^c \quad \eta = \frac{r'}{r_{\text{shock}}}$$

$$\eta = \frac{r'}{r_{\text{shock}}}$$

$$\eta = \frac{r'}{r_{\text{shock}}}$$

$$\eta = \frac{\gamma'}{r_{\text{shock}}}$$

$$\eta = \frac{\gamma'}{r_{\text{shock}}}$$

Gives: Variation of v, ρ, P at detector location

Analytical model of semi-confined SNe

Idealized simulations adiabatic & cooling

Idealized simulations adiabatic & cooling

Gas properties at detector

Flow velocities at detector with multiple channels

Flow velocities at detector with bigger channels

More energy deposited at closer radii

Semi-confined Free-field Fully-confined

More momentum deposited at closer radii too

Cioffi et al. (1988)

Terminal radial momentum of SN:

$$\bar{\mu}_{\text{final}} = 4.8 \times 10^5 \frac{E_{51}^{13/14}}{\zeta_m^{3/14} n_H^{1/7}} \qquad [M_{\odot} \text{ km s}^{-1}]$$

$$\bar{\mu}_{\text{final}} = 3.0 \times 10^5 \frac{E_{51}^{16/17}}{n_H^{2/17}} \max[\zeta_m, 0.01]^{-0.14} \quad [M_{\odot} \text{ km s}^{-1}] \quad \text{Kimm \& Cen (2014)}$$

Semi-confined Free-field Fully-confined

Turbulence in the outflow

Solid – compressive Dashed – solenoidal Semi-confined Free-field

Kinetic energy spectrum

Findings so far...

Semi-confined SNe:

- Sustain stronger perturbations higher velocity and pressure
- > Deposit more kinetic energy and momentum at small scales
- Sustain solenoidal turbulence behind the shock

Findings so far...

Semi-confined SNe:

Higher dynamical impact on **local** environment

- Sustain stronger perturbations higher velocity and pressure
- > Deposit more kinetic energy and momentum at small scales
- Sustain solenoidal turbulence behind the shock

Smaller supernova impact sizescale?

We probably should account for partial confinement in 1-D sub-grid models!

Possibly better for regulating SF

How can we turn this into a 1-D model?

Mimic the local perturbation from cloud-confined SN

How can we turn this into a 1-D model?

Mimic the local perturbation from cloud-confined SN

Conclusion

- SN energy from cloud usually leaves preferentially through the lowdensity channels, largely not a 1-D problem
- Analytical models for interior explosions can describe this scenario
- Semi-confined SNe produce higher outflow velocity from bubble
- Semi-confined SNe make stronger perturbation and larger energy/momentum deposition at small-scale environment
- Using clumpy medium for SN models may be the solution

Collision of SN on cavity shell

Collision of SN on cavity shell

Cooling at a similar rate

Molecular clouds

Semi-confined Supernova in HII region bubbles

HII region in molecular clouds

Semi-confined Supernova in HII region bubbles

Kinetic energies seen from SN progenitor

Semi-confined Supernova in HII region bubbles

Turbulent free-field cases

Kicks by SNe in turbulent cloud vs turbulent free-field

How can we turn this into a 1-D model?

Velocities are too high

How can we turn this into a 1-D model?

Semi-confined Supernova in HII region bubbles

How can we turn this into a 1-D model?

SN in homogenous uniform medium

Velocities are going down

Energies of cloud vs turbulent free-fields

Total energy contained within each radius

Energies of cloud vs turbulent free-fields

Energy binned by longitude contained within 10 pc

Turb spec – cloud vs uniform free-field

Solenoidal component of uniform case is much lower

Turb spec – cloud vs turbulent free-field

time

Solenoidal component becomes similar

Radiation Hydrodynamics The SPH-MCRT scheme

Tree-based (fully adaptive) Radiation Hydrodynamics The SPH-MCRT scheme

Semi-confined Supernova in HII region bubbles