# Magnetohydrodynamic Simulations of Accretion Discs



Jacksen Narvaez M.Sc. Student @ MUN jjnarvaezcor@mun.ca

Supervisor: Dr. Terrence Tricco

2nd European Phantom users workshop

Simulation, Modeling and Synthetic Data Lab

## **Magnetized Accretion Discs**

Accretion  $\rightarrow$  mechanism for angular momentum transport.

Shakura-Sunyaev (1973)  $\nu = \alpha c_S H \rightarrow \text{Turbulence.}$ 

Magnetorotational instability (MRI)



Balbus & Hawley 1991



### **Global Disc Simulations**

Flock et al. 2011



#### **Grid codes**

PLUTO: Flock et al. 2010, 2011, 2012, 2013; Mignone et al. 2012; Parkin & Bicknell 2013; Parkin 2014a,b. ATHENA++: Sorathia et al. 2012; Ju et al. 2016, 2017; Pjanka & Stone 2020; Rodman & Reynolds 2024. GLOBAL & NIRVANA: Fromang & Nelson 2006 Meshless codes GIZMO: Deng et al. 2020

Adapted from Wissing *et al.* 2022

**SPH** [Shearing box approximation] Hopkins & Raives 2015; Tricco 2015; Deng et al. 2019; Wissing et al. 2022



### **Global Disc Simulations**

Flock et al. 2011

Main challenges for meshless codes:

- > Resolution
- > Dissipation
- Divergence-free constraint

**Grid codes** P**LUTO:** Flock et al. 2010, 2011, 2012, 2013; **Meshless codes** GIZMO: Deng et al. 2020 Adapted from Wissing *et al.* (2021)

**Aim:** Study the suitability of the SPMHD algorithm for reproducing MRI in global disc simulations.

### **Model Setup**

#### 3D ideal MHD simulations.

### **Initial Conditions:**

- $M_d = 0.05 M_{\odot}$ H/Rin = 0.05 (Thin disc)
- Hydrostatic equilibrium

Toroidal magnetic fields:  $\beta_0=25$ 

**EOS:** Locally Isothermal

$$\begin{split} & \diamondsuit \Sigma(R) = \Sigma_0 \left( 1 - \sqrt{\frac{R_{in}}{R}} \right) \left( \frac{R}{R_{ref}} \right)^{-p} \\ & \diamondsuit \quad v_{\phi}^2 = v_k^2 - c_s^2 \left( \frac{3}{2} + p + q \right) \left( 1 + \frac{1}{\beta_0} \right) \\ & \diamondsuit \quad B_{\phi} = \sqrt{\frac{2P_g}{\beta_0}}, \quad B_R = B_z = 0 \\ & \diamondsuit \quad c_s = c_{s0} r^{-q} \end{split}$$



#### **Domain.** *R*: 1-10, *z*: ±3H, *φ*: 2π

 $N_p \ge 10^6$ 



#### Source:

https://phantomsph.github.io/ https://github.com/ttricco/sarracen/

### **PLUTO** [Godunov scheme]

**Domain.** *r*: 1-8,  $\theta$ :  $\pi/2 \pm 0.3$ ,  $\varphi$ :  $\pi/2$ 

**Resolution:** 



### $N_r = 800 \ (log)$ $N_{\theta} = 280$ $N_{\phi} = 560$ $\Delta \mathbf{r}$ : $\mathbf{r} \Delta \theta$ : $\mathbf{r} \Delta \phi$ 1:1.04:0.93

#### Source:

https://plutocode.ph.unito.it/ https://github.com/GiMattia/PyPLUTO

## Capturing MRI

#### Fastest growing mode

$$\lambda_{MRI} = 2\pi \sqrt{\frac{16}{15}} \frac{v_A}{\Omega}$$

**Grid codes:**  $\lambda$ MRI/ $\Delta$  > 5 e.g. Hawley et al. 1995; Miller & Stone 2000



**SPH** [Shearing box approximation]

 $Q = \lambda MRI/h \rightarrow Quality factor$ 

Wissing et al. (2022) used Q > 40 for stratified net flux simulations.



### **PLUTO: Early disc evolution**





## **PLUTO: Early disc evolution**

t = 3.50



 $P_{gas}$ 

В

t=1.00 τ

t=2.00 τ

### **PLUTO:** The butterfly diagram

\* At R=2





Np = 1M

#### PHANTOM

Growth of strong toroidal fields.

**Reported also by** 

Dobbs et al. 2016, Deng et al. 2019, Wissing et al. 2022



### PHANTOM

**Divergence cleaning** Tricco et al. (2016)

Overcleaning

Increase the cleaning wave speed

 $Ch \longrightarrow fovc \, Ch$ 

 $f_{ovc} = 20$ 



#### Resolution



### Kernel



#### **Artificial resistivity**



M4 Kernel Np = 4M

M6 Kernel

M6 Kernel

 $N_p = 1M$ 

 $Q_{\rm B} = 0.3$ 

 $N_p = 1M$ 

- 10-3 t=3.0 t=0.1 t=1.0 t=2.0 - 10-4  $B_{\phi}$  $-10^{-3}$ 10-3 t=0.1 t=1.0 t=2.0 t=3.0 - 10-4 0 - 10<sup>-5</sup>  $B_{\phi}$ -10-5  $-10^{-4}$  $-10^{-3}$ **1**0<sup>-3</sup> t=0.1 t=1.0 t=2.0 t=3.0 -10-4 • . - 10-5  $B_{\phi}$  $-10^{-5}$  $-10^{-4}$  $-10^{-3}$ 

## Summary

- ➢ In SPH, MRI has not been activated yet
- Critical challenges for Global Disc MHD Simulations:
  - Dissipation
  - Divergence cleaning
- ➤ Future Work:
  - Study energy loss due to artificial resistivity, divergence cleaning, ...
  - Improve resolution: Include adaptive particle refinement (APR)



# Thanks!

Jacksen Narvaez jjnarvaezcor@mun.ca

2nd European Phantom users workshop

Simulation, Modeling and Synthetic Data Lab

