# DUST DYNAMICS IN PROTOPLANETARY DISCS AFTER STELLAR FLYBYS

VASUNDHARA PRASAD, CATHIE CLARKE, CRISTIANO LONGARINI



### HOW DO PLANETS FORM?

 Protoplanetary discs contain small dust grains that must grow to pebble and planetesimal sizes



### HOW DO PLANETS FORM?

- How do cm-sized dust grains grow?
- Radial drift barrier: they should fall into the star faster than they can collide together and grow
- Streaming instability: a drag instability that reduces dust radial drift and leads to the growth of dust overdensities



Nesvorný+ 2019

## HOW DO PLANETS FORM?

- But the streaming instability is only triggered in regions with a sufficiently high **dust to gas ratio**
- Define the dimensionless Stokes number:

$$\mathrm{St} = \frac{\rho_{\mathrm{gr}}s}{\rho c_s} \Omega_k$$

- For cm-sized dust particles (St  $\geq$  1) we require surface dust to gas ratios Z  $\geq$  0.005
- So we need the disc to have long-lasting substructures with high dust to gas ratios



- ALMA observations show most protoplanetary discs have substructures
- Could these concentrate dust enough to trigger dust grain growth and planetesimal formation?
- And what causes these substructures anyway?
  - planets embedded in the disc
  - interactions with a bound/unbound companion...



ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

### STELLAR FLYBYS

• Define a *flyby* as a single interaction with an unbound companion



Cuello+ 2023

# STELLAR FLYBYS

- Encounters with unbound perturbers are common for young stars in dense stellar environments
- If the flyby is close enough, tidallyinduced spirals are seen in the perturbed disc

# Can flyby-induced substructures act as dust traps?



# SIMULATION SETUP

- We use PHANTOM to simulate five discs perturbed by flyby encounters and one control case with no flyby
- Disc with initial extent of 150 AU around a solar-mass star
- We use 10<sup>6</sup> SPH gas particles and 10<sup>5</sup> dust particles
- Dust grains have a size of 3cm (corresponding to St > 1)
- We use the two-fluid algorithm for dust particles

| Simulation<br>ID | $M_2 [M_{\odot}]$ | r <sub>peri</sub> [AU] | inclination |
|------------------|-------------------|------------------------|-------------|
| standard_run     | 1                 | 175                    | prograde    |
| half             | 0.5               | 175                    | prograde    |
| intermediate     | 1                 | 263                    | prograde    |
| far              | 1                 | 350                    | prograde    |
| retro            | 1                 | 175                    | retrograde  |
| no_flyby         | 0                 | $\infty$               | n/a         |







### TRACKING SPH PARTICLES

- Aim: follow particles in gas and dust substructures over time to see whether their dust to gas ratio increases
- We divide the disc into equal azimuths
- Then we select *dust* particles with the highest gas density/dust to gas ratio in each azimuth
- Then we track these particles' behaviour back and forth in time



Prasad+ in review

#### TRACKING SPH PARTICLES: DUST SUBSTRUCTURES

• We observe a significant increase in dust to gas ratio compared to the no flyby case



#### TRACKING SPH PARTICLES: GAS SUBSTRUCTURES

• We get some dust growth in the gas spiral arms, but not in every case







#### TRIGGERING THE STREAMING INSTABILITY

- Dust particles in flyby-induced substructures have high dust to gas ratios for long periods of time
- But are these dust to gas ratios sufficiently high to trigger the streaming instability?



#### TRIGGERING THE STREAMING INSTABILITY

- We calculate the threshold Z for each particle as a function of time
- Then we compare this value to the particle's actual surface dust to gas ratio:

$$Z = \frac{\rho_d}{\rho_g} \frac{H_d}{H_g}$$

• The tracked particles' mean value of Z exceeds the threshold for many tens of dynamical times after the flyby



#### SUMMARY

- The growth of dust grains from cm to m sizes is an open problem in planet formation
- Substructures that concentrate dust and promote dust grain growth can be induced by stellar flybys
- The long-lived dust substructures act as dust traps, but the shorter-lived gas spirals only exhibit dust trapping in some cases
- The dust to gas ratios induced by the flyby are large enough to trigger the streaming instability and remain so for sufficiently long timescales

#### THE EFFECT OF DRAG



