

SITY OF STER

LEADING AND TRAILING SPIRAL ARMS IN A NEARLY BROKEN DISC

Sahl Rowther, Rebecca Nealon, Richard Alexander, and Farzana Meru Sahl.rowther@leicester.ac.uk sah195.github.io

ALMA Observations

- Discs are highly structured.
- The variety of sub-structures also have a variety of explanations.

Sahl Rowther

Andrews+ 2018

Substructures in the dust continuum

Ring & Gaps: Planets

Massive planets can carve open a gap in the disc.

Sahl Rowther

Possible origins of the substructures

Spirals: Gravitational Instability

For massive discs, gravitational instabilities occur due to the disc self-gravity.

Sahl Rowther

Possible origins of the substructures

Observations ofShadows

Sahl Rowther

Substructures in scattered light

Origin of Shadows

A misaligned inner disc casts a shadow onto the outer disc.

Sahl Rowther

Marino+ 2015

6

Flyby Induced Misalignment

Sahl Rowther

Nealon+ 2020

Shadows can also create spirals

Sahl Rowther

Temperature

Shadows can also create spirals

But when the hydrodynamics of the inner disc is included, spirals were not seen.

MISALIGNED CIRCUMBINARY DISCS

Initial Disc Setup

Initial Disc Setup

Sahl Rowther

Isothermal, and without self-gravity

The Formation of Leading Spiral Arms

Evolution of a $0.2M_{\odot}$ disc

A Misaligned Disc

Leading spiral arms are launched where the misaligned inner disc connects to the outer disc.

Sahl Rowther

A Broken Disc

The inner and outer disc are disconnected. Hence, there are no leading spiral arms.

Sahl Rowther

An Aligned Disc

The two connecting nodes no longer exist. Hence the leading spirals also disappear.

Sahl Rowther

Sahl Rowther

Sahl Rowther

Sahl Rowther

Sahl Rowther

Calculating the Relative Disc Misalignment

 $\theta = \cos^{-1} \left(\hat{\boldsymbol{\ell}}_{\text{inner}} \cdot \hat{\boldsymbol{\ell}}_{\text{outer}} \right)$

Unit angular momentum vector

Calculating the Relative Disc Misalignment

 $\theta = \cos^{-1} \left(\hat{\boldsymbol{\ell}}_{\text{inner}} \cdot \hat{\boldsymbol{\ell}}_{\text{outer}} \right)$

Unit angular momentum vector

Calculating the Relative Disc Misalignment

 $\theta = \cos^{-1} \left(\hat{\boldsymbol{\ell}}_{\text{inner}} \cdot \hat{\boldsymbol{\ell}}_{\text{outer}} \right)$

Unit angular momentum vector

When do leading spirals form?

Sahl Rowther

Evolution of relative disc misalignment

Leading Spirals are Independent of Disc Physics

Sahl Rowther

Including more realistic physics

Initial Disc Setup

The Formation of Leading & Trailing Spiral Arms

Sahl Rowther

Evolution of a $0.02M_{\odot}$ disc

Shadows

Sahl Rowther

Why are there trailing spirals?

23

When are trailing spirals seen?

70 -Relative Disc Misalignment 60 -50 -40 -30 -20 -

Sahl Rowther

Evolution of relative disc misalignment

DUE TO THE DYNAMICS OF THE INNER AND OUTER DISC AT MODERATE MISALIGNMENTS

DUE TO SHADOWS CAST BY A HIGHLY MISALIGNED INNER DISC

Conclusions

- In a misaligned cicumbinary disc, there are two mechanisms that can generate spiral structures.
- At moderate misalignments, the inner disc remains connected to the outer disc at two nodes from which leading spirals are formed.
- Shadows are able to launch trailing spirals when the inner disc is disconnected from the outer disc.

Similar evolution of the relative disc misalignment

Sahl Rowther

Isothermal vs Live Radiative Transfer

No trailing spirals in the isothermal simulation

Sahl Rowther

Isothermal vs Live Radiative Transfer

Sahl Rowther

Removing the inner disc

1M Particles

Resolution Test

The formation of leading spirals is consistent

Sahl Rowther

8M Particles

