Interacting stellar winds

log col

Lionel Siess

Institute of Astronomy and Astrophysics, ULB

D. Dionese, S. Deschaux (ULB), Malfait J., Maes S., Esseldeurs M. (KUL)

Phantom users workshop

Grenoble University Jun 2-6, 2025

AGB stars, dust and binaries

High-resolution observations reveal complex structures

- Spirals, disks, and shells
- Best explained by the interaction with a binary companion which can also impact mass loss rate determination → Owen's talk

R sculptoris

LIONEL SIESS

AGB stars, dust and binaries

- The presence of a mass loosing AGB star in a binary can
 - induce mass exchange leading to
 - (*dusty*) common envelope evolution for short P system
 - Formation of chemically peculiar stars (Ba stars, CEMP, ...) with puzzling orbital parameters

Implementation of mass loss

1. Shells of particles are ejected at specific times depending on the mass loss rate and number of particles on the sphere (N_p)

$$\delta t_{\rm inj} = \frac{N_p m}{\dot{M}}$$

2. the radial spacing between 2 consecutive shells depends on the injection velocity

$$\delta r pprox v_{
m inj} imes \delta t_{
m inj}$$

- 3. On the sphere, the distance of a particle to its neighbour d_\perp is fixed and we impose $\delta_r=w_{ss}d_\perp$
- 4. Combining these equations the setup parameters fix the particle mass : $m = \frac{M w_{ss} d_{\perp}}{N_p v_{inj}}$

The only free parameters are the number of particles N_p and the wind shell spacing parameter w_{ss}

Distribution of particles on the sphere

- **1.** Original method : particles are distributed on an isocahedron surface
 - All particles have equidistant neighbors
 - BUT the number of particles is discrete

 $N_{\text{part}} = 10(2q-1)^2 + 1 = 12, \ 92, \ 252, \ 492, \ 812, \ \dots$

2. We implemented a new method based on the Fibonacci lattice which allows to place any integer number of particles on a sphere

Setting the initial particles properties

1. Given an injection radius (typically the stellar radius), wind temperature and mass loss rate we calculate the *steady 1D wind profile* (*Parker solution*)

$$\frac{\mathrm{d}v}{\mathrm{d}r} = \frac{2c_{\mathrm{s}}^{2}/r - GM_{*}(1-\Gamma)/r^{2} - (\gamma-1)\Lambda/v}{v(1-c_{\mathrm{s}}^{2}/v^{2})}$$
$$\frac{\mathrm{d}T_{\mathrm{g}}}{\mathrm{d}r} = (1-\gamma)T_{\mathrm{g}}\left(\frac{2}{r} + \frac{1}{v}\frac{\mathrm{d}v}{\mathrm{d}r}\right) + \frac{(\gamma-1)\mu m_{\mathrm{u}}}{k}\frac{\Lambda}{v}$$

<u>2 important parameters :</u>

- Γ : the parameter that reduces the effective gravity and allows wind launching : radiative acceleration on dust or lines Λ : the cooling rate \rightarrow Davide's talk
- 2. When particles are released, they are assigned the properties of the 1D wind solution (v, u)
 - Spheres are rotated between injections to remove artifacts

AGB wind-companion interaction

exploration of the parameter space (e, a, M) using the free wind approximation ($\Gamma = 1$)

- key parameter determining the morphology
 - Vwind /Vorb
 - mass ration (M₁/M₂)
 - eccentricity e

Stronger impact for

(i) larger M_{comp} , (ii) smaller a, (iii) lower v_{wind} , (iv) higher e

Morphology types: binary systems

LIONEL SIESS

Eccentric binaries

LIONEL SIESS

7TH PHANTOM WORKSHOP, GRENOBLE, JUNE 6, 2025

13

Impact HI cooling: No periodic instabilities

e = 0, *v* = 5 km/s

Malfait+ 2024

LIONEL SIESS

Impact HI cooling: formation of accretion disk

e = 0, *v* = 5 km/s

Orbital plane no HI electron excitation cooling: with HI electron excitation cooling: view Unstable bow shock Accretion disk + stable bow shock -14⁻¹² log density [g/cm³] 10 au – 10 au – AGB star companior 5 au 5 au -16 0 au 0 au --17 Malfait+ 2024 -18 10 au 10 au -5 au 5 au 0 au -5 au 5 au 0 au

7TH PHANTOM WORKSHOP, GRENOBLE, JUNE 6, 2025

LIONEL SIESS

Disc structure

- Flared disc
- disc mass and scale height increase with wind mass loss rate

• keplerian disc

v ∕=1.33×10⁷ cm/s

Hierarchical triple systems

Malfait+ 2024b

PHANTOM

Effect of dust on the hydro equations

Dust is opaque and can absorb radiation which translates into

Determination of T_{dust}

- Approximate solutions require calculation of optical depth
- Exact solutions need coupling with RT codes e.g. MCFOST

$$T_{\rm dust}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_*}{r}\right)^2} \right) T_*^4 e^{-\tau}$$

A two step process

1. Nucleus formation

- Process operates at the molecular scale
- seeds contain 100 to 1000 atoms
- To compute the nucleation rate, we need abundances of monomers (dust building blocks)
- → chemical network including 7 atoms : H, C, O, N, Si, S, Ti and 25 molecules (C_2 , H_2 , OH, H_2O , CO, CO₂, CH₄, C_2H , C_2H_2 , TiO, SiO)

 \rightarrow we assume chemical equilibrium : no need to store individual abundances, only that of atomic carbon

2. Grain growth

- Gas molecules stick to the grain surface and make it grow
- The growth proceeds via addition of monomers

Dust evolution : Moment equations

This theory does not calculate the grain size distribution f(N, t) but uses its moments \mathcal{K}_i to describe the global dust properties:

- Average grain radius $\langle a \rangle \propto \mathcal{K}_{_{I}} / \mathcal{K}_{_{0}}$
- Average grain surface < S> $\propto K_2 / K_0$
- Number monomers condensed in grains $\mathcal{K}_{3} \propto$ opacity

$$\mathcal{K}_i = \sum_{N=N_l}^{\infty} N^{i/3} f(N, t)$$

N is the number of monomers in the grain

The evolution of the moments is given by

$$\frac{\mathrm{d}\widehat{J_*}}{\mathrm{d}t} = \frac{\widehat{J_*}^s - \widehat{J_*}}{\tau_*}$$
$$\frac{\mathrm{d}\widehat{\mathcal{K}}_0}{\mathrm{d}t} = \widehat{J_*}$$
$$\frac{\mathrm{d}\widehat{\mathcal{K}}_i}{\mathrm{d}t} = \frac{i\widehat{\mathcal{K}}_{i-1}}{3\tau} + N_l^{i/3}\widehat{J_*},$$

 J_* : nucleation rate $f(T,P_i)$

- τ^{-1} : rate of growth/destruction of the grains
- J_*^{s} : rate of formation of critical clusters
- τ_* : relaxation time to equilibrium

Each SPH particle now carries the information about the moments \mathcal{K}_i and J_*

Nucleation rate

Dust in the wind

Dust in common envelopes

- Dust forms in the unbound material and does not help unbinding more mass
- Dust forms early in the simulation
 (~ 1 yr after start of simulation)
- Dust formation is very efficient (~ $10^{-3} 10^{-2} M_{\odot}$)
- Dust dramatically impacts the optical appearance of the object

LIONEL SIESS

19

Colliding winds

• mass loss rate

New sink properties

- wind velocity
- wind temperature
- resolution $N_{\mbox{\tiny p}}$

Line driven wind (CAK theory) : absorption and scattering of photons provides the momentum and acceleration of the gas.

$$\Gamma_{\rm line} = g_0 \left(1 - \frac{R_{\rm inj}}{r} \right)^{2\beta - 1}$$
Muijres+ 2012

Colliding winds

An important quantity to describe colliding winds is the cooling parameter

$$\chi = \frac{t_{\rm cool}}{t_{\rm esc}} \approx \frac{v_8^4 d_{12}}{\dot{M}_{-7}}$$

- if χ < 1 the shock is radiative, temperature drops rapidly → loss of pressure, wind collision region dense and thin, subject to thin-shell instability
- if χ > 1 the shock is adiabatic, pressure high, shock front stable

S. Deschaux

Thin shell instability

- deformation of the shock front
- mixing of material across the shock
- in agreement with other simulations

S. Deschaux

LIONEL SIESS

Future prospects

- Radiative transfer coupling with MCFOST to estimate T_{dust} , optical depth (τ), radiation force (Γ)
- Chemistry : O-rich dust (C/O<1)
- **Pulsations** improve wind launching mechanism. May need to solve the energy transport in the STAR
- explore new wind geometries (collimated winds, jets)
- Dust-gas coupling

