

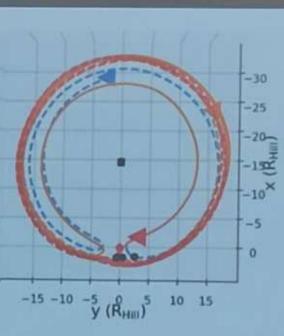
Parallelizing Multi-Physics SPH in Phantom

Terrence Tricco Memorial University of Newfoundland

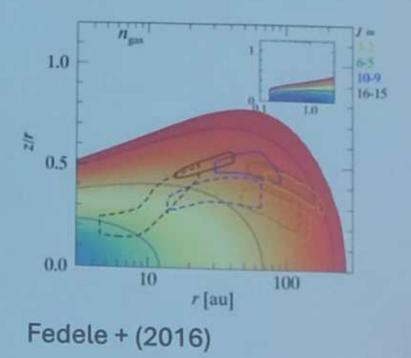
Do you use MPI in Phantom?

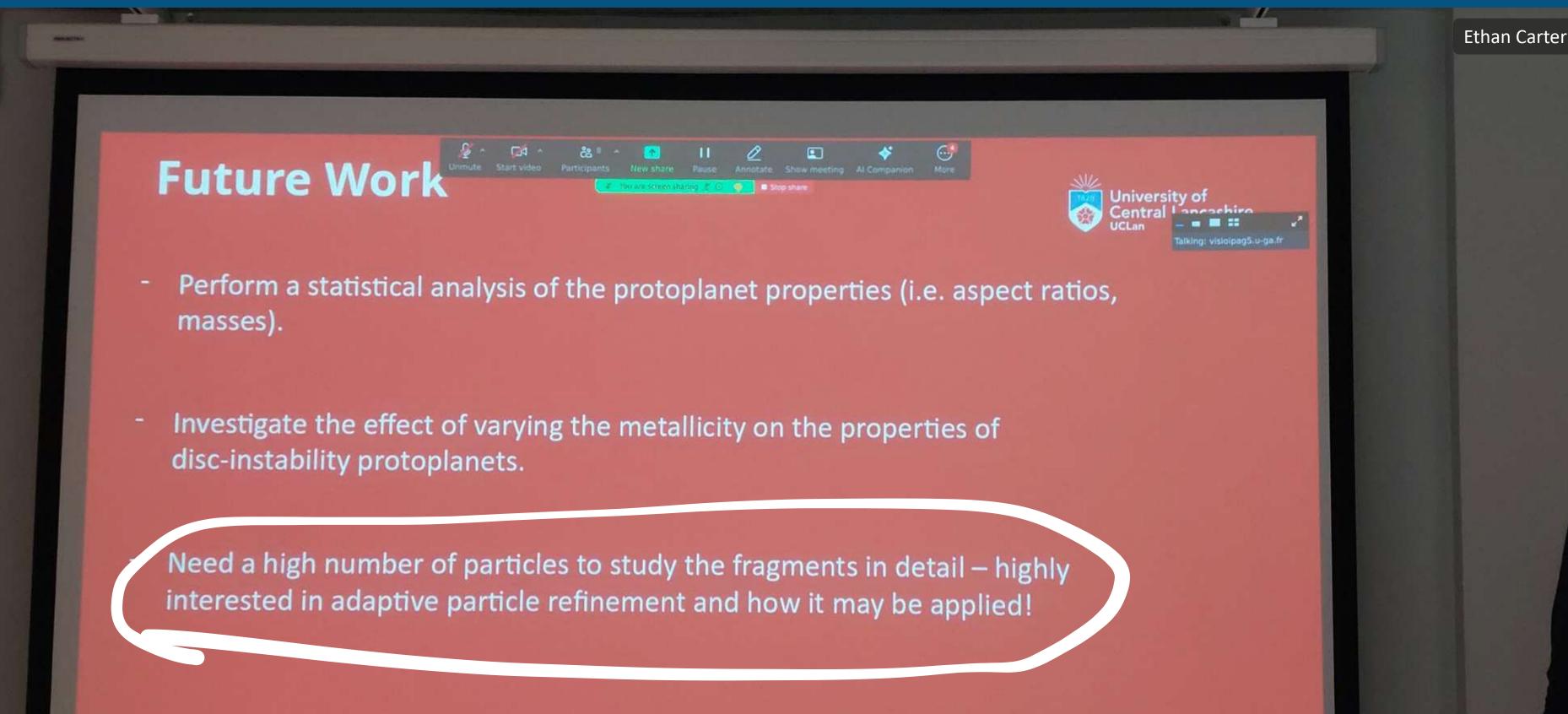
(You are sharing your entire screen.

What's next?


The pipeline works, now to make it "right"

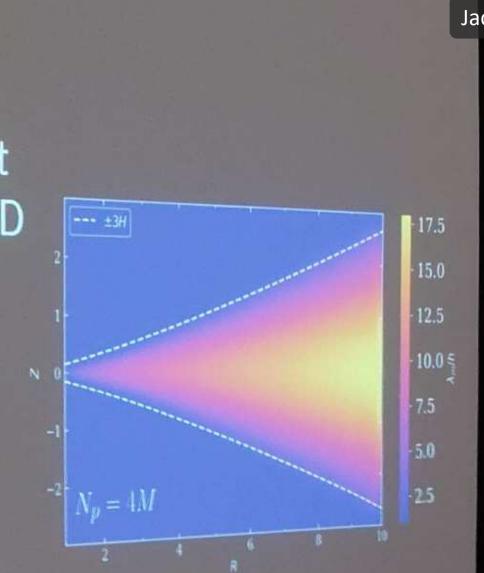
i.e. Realistic chemical network


Use APR to get better resolution around dense clumps of particles.


Compare to current work looking at the chemical processing around circumplanetary disks in CA formation.

George Blaylock-Squibbs

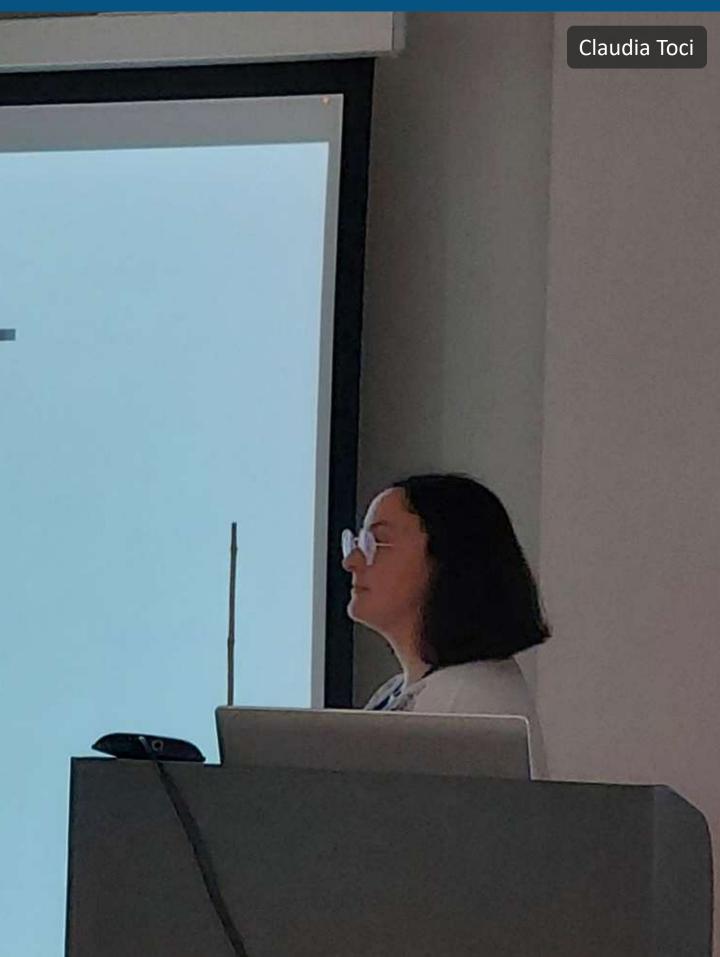
Cridland + (2025)



In SPH, MRI has not been activated yet Critical challenges for Global Disc MHD Simulations: Dissipation 0

Divergence cleaning 0

Future Work: Study energy loss due to artificial resistivity, divergence cleaning, 0 Improve resolution: Include adaptive particle refinement (APR) 0


Jacksen Narvaez-Coral

Future perspectives

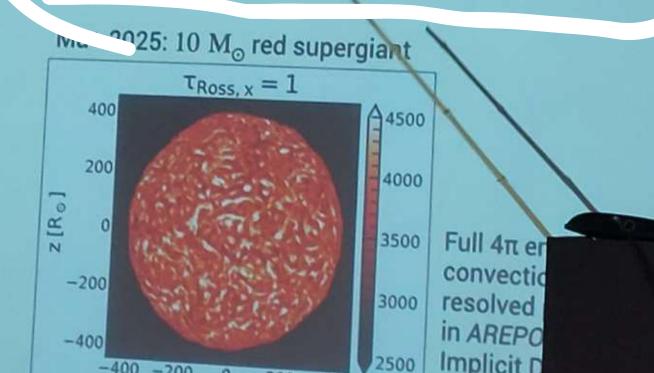
• Increase the resolution: SHAMROCK and APR (e.g., testing GG Tau with increased resolution)

• Accurate temperature layers: PHANTOM + MCFOST (e.g., testing GG Tau with different temperature structures)

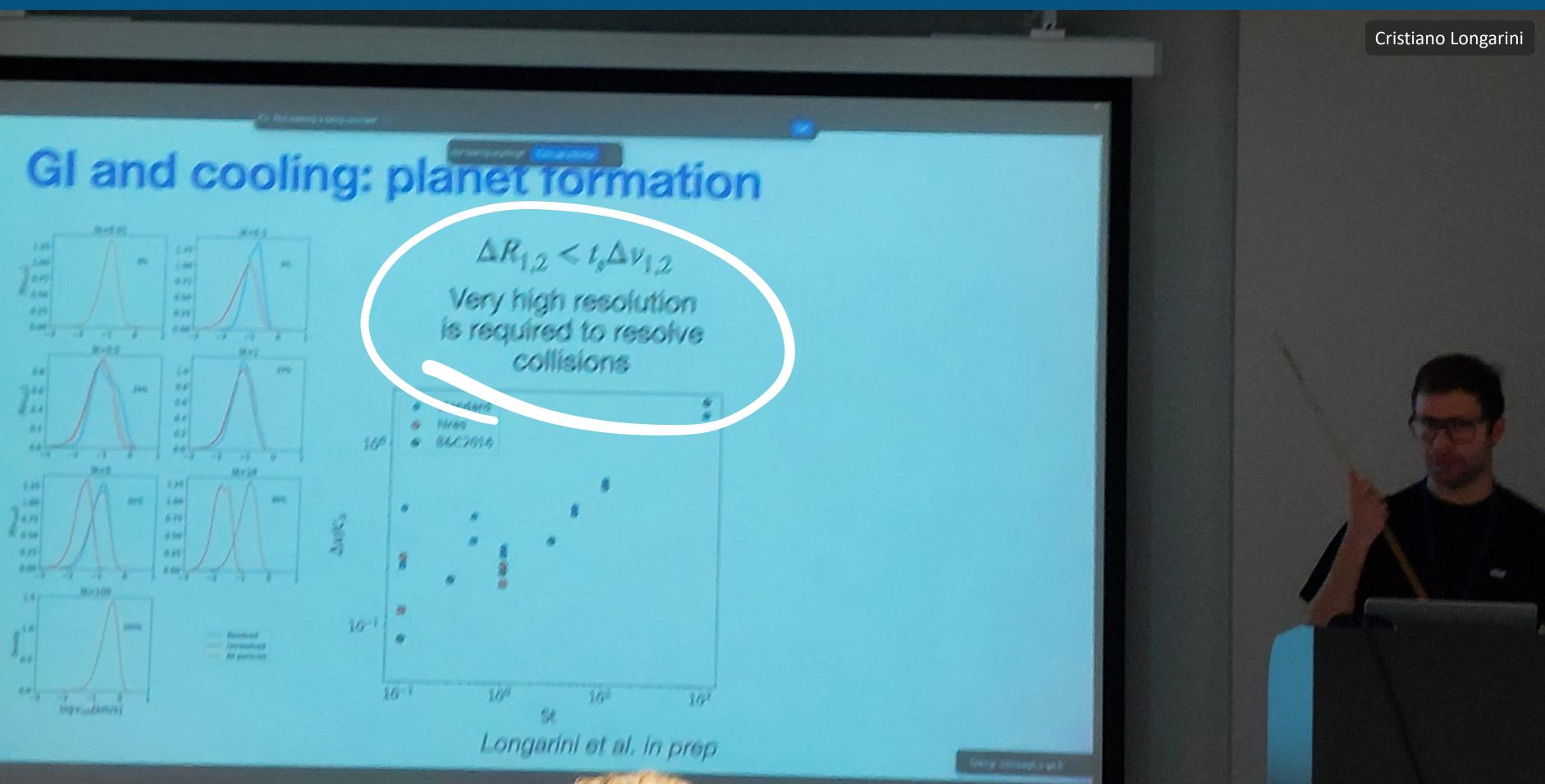
• Chemical complexity: PHANTOM + KROME (e.g., testing molecular emission of GG Tau)

Wrapping up: Room for improvement

Convection and optically thin radiation transport

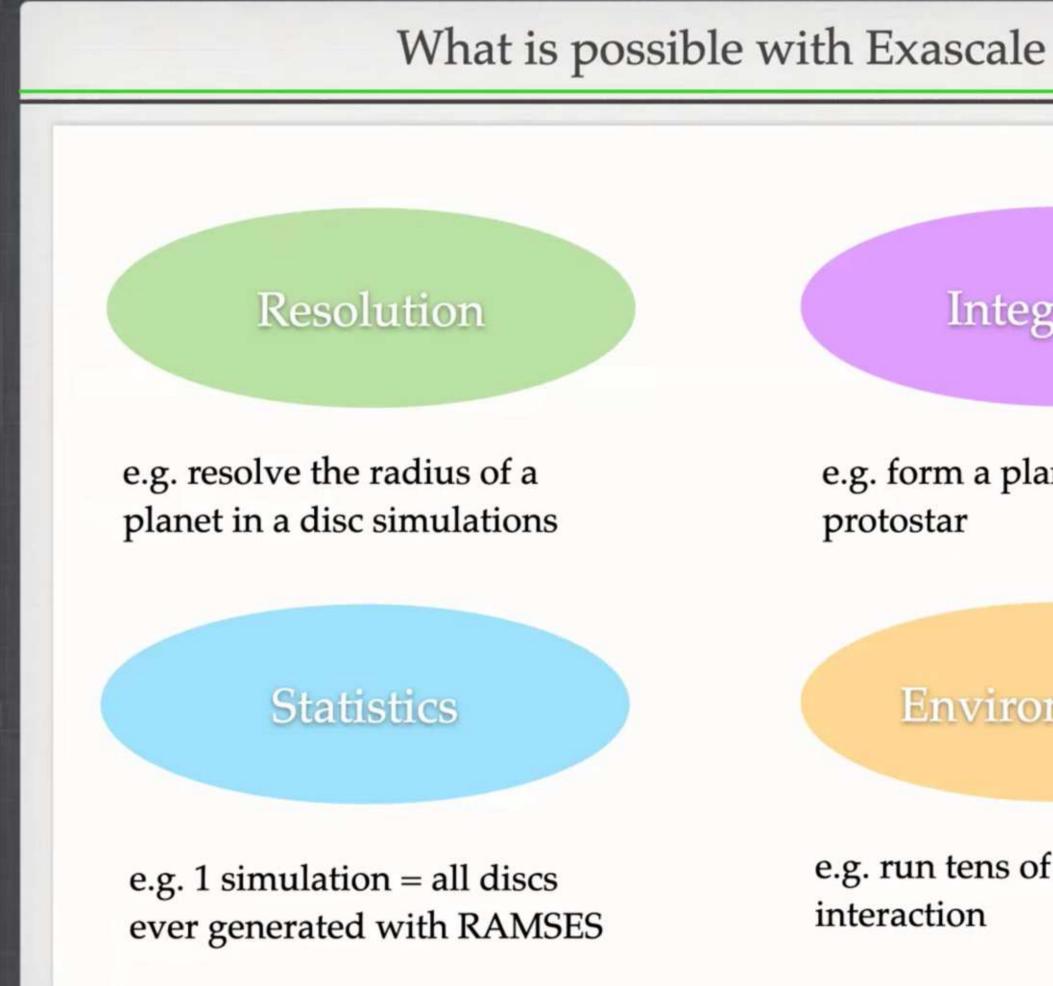

A realistic 3D giant star must have convection driven by

priorospiterie


Recombination energy

- Add recombination energy, making substantial progress towards settling the debate on its relevance Sabach+ 2017, Grichener+ 2018, Ivanova 2018, Soker+18
- Cannot use MESA EoS tables directly, because radiation energy must be separated out from the total internal energy
- Current progress: Use Ryo Hirai's fits analytical treatment of ionisation physics (gas + radiation + recombination EoS, ieos=20), including new fits of c_V accounting for rotational and vibrational degrees of freedom of H₂

Photospheric cooling is not correctly captured due to the unresolved photosphere and an initial lack of SPH particles above the photosphere to radiate into



Mike Lau

There is a clear need to run higher resolution simulations.

Guillaume Laibe

Integration

e.g. form a planet after the

Environnement

e.g. run tens of objets in

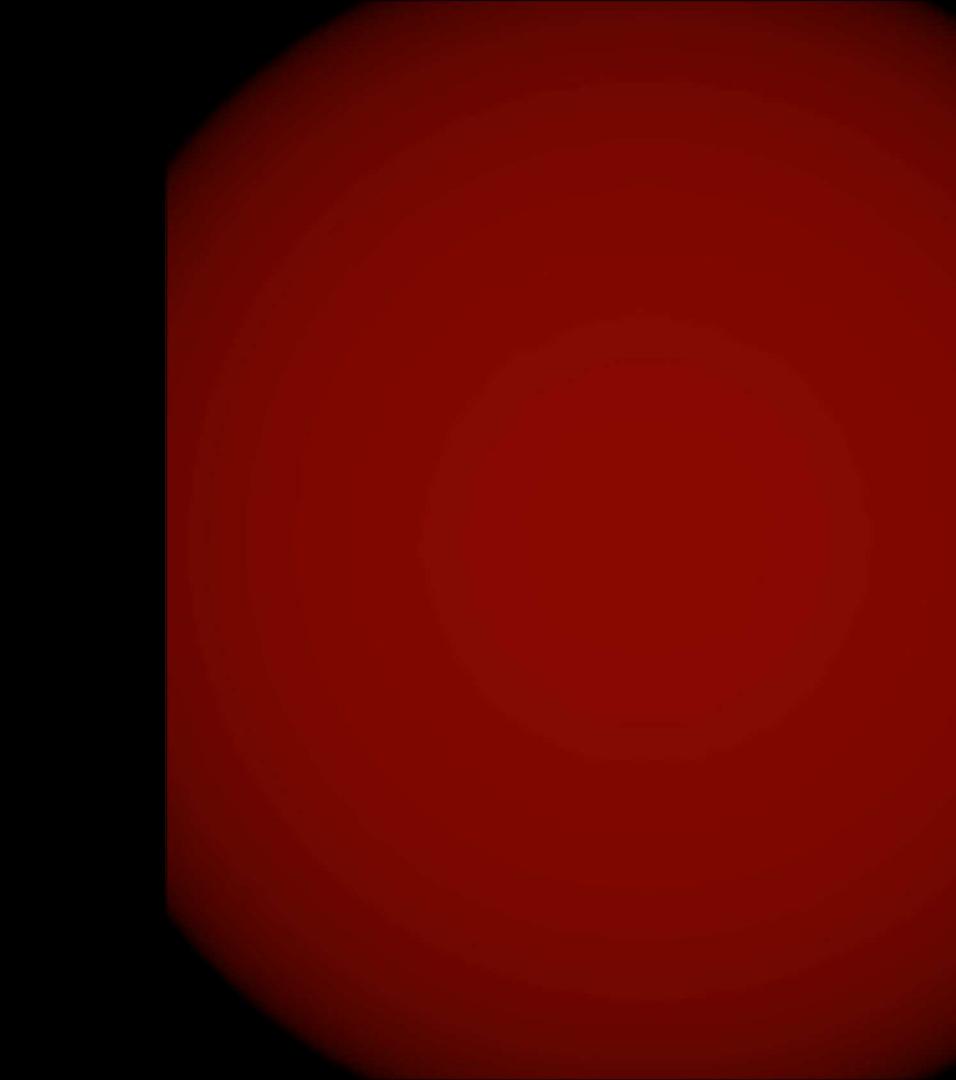
To Higher Resolution

- How can we reach higher resolutions?
 - 1. Algorithmic optimizations.

2. More compute.

To Higher Resolution

- How can we reach higher resolutions?
 - 1. Algorithmic optimizations.
 - Adaptive particle refinement (APR) ~6x speedup.
 - Individual particle timesteps 100-1000x speedup.
 - 2. More compute.


speedup. speedup.

To Higher Resolution

- How can we reach higher resolutions?
 - 1. Algorithmic optimizations.
 - Adaptive particle refinement (APR) ~6x speedup.
 - Individual particle timesteps 100-1000x speedup.
 - 2. More compute.
 - OpenMP ~48-64x speedup.
 - MPI ~2-1000x speedup?
 - GPUs ~10x speedup?

speedup. speedup.

How good is Phantom's MPI scaling?

Gravitational Collapse

64 cores (OpenMP)

TUbar ITTE Jertu	.in wri	itten su	uccessful	ly.				
Since code start	: 746 1	timestep	os, wall:	956s cj	ou: 5.09	E+04s cpu/w	all: 53	
Since last dump	: 8 tim	nesteps	, wall: 12	2s cpu:	692s cp	u/wall: 60		
		wall	1	cpu c	ou/wall	load bal	frac	
step		11.629		.92s	59.52		92.08%	
⊢tree	÷	2.88		.36s		100.00%		
density	÷	2.50		.60s	김희희병한 귀엽감감	100.00%	19.80%	
-local	÷	2.50	2	T - T - T - T	64.51	전기 감사가 더 감사가 없다.	19.80%	
force	:	5.75	2 () () () () () () () () () (.66s	이 아이가 한 것이다.		45.54%	
-local	÷	4.62		.27s			36.63%	
E E UILAI						200.00/0	00.00/0	
	÷				43.41	100.00%	0.99%	
⊣cons2prim -write_dump ∝ Number of ste	No. of Long Street	0.129 1.009	s 5 s 0 summary:	.43s .98s	43.41 0.98	100.00% 8	0.99% 7.92%	**
⊣cons2prim -write_dump ∝ Number of ste	No. of Long Street	0.129 1.009	s 5 s 0 summary:	.43s		100.00%	7.92%	
	ce last	0.129 1.009	s 5 s 0 summary:	.43s		100.00% 8	7.92%	**
└─cons2prim ─write_dump ☆ Number of ste ☆ Wall time sin	ce last 	0.12s 1.00s ce last t summan	s 5 s 0 summary: ry:	.43s .98s	0.98	100.00% 8	7.92%	**
└─cons2prim ─write_dump ☆ Number of ste ☆ Wall time sin c particles woke	ce last 	0.12s 1.00s ce last t summan	s 5 s 0 summary: ry:	.43s .98s	0.98	100.00% 8	7.92%	**
-cons2prim -write_dump * Number of ste * Wall time sin particles woke #steps mean	ce last 	0.129 1.009 ce last t summan	s 5 s 0 summary: ry:	.43s .98s art/step	0.98	100.00% 8	7.92%	**
-cons2prim write_dump * Number of ste * Wall time sin particles woke #steps mean 4	n # part/	0.129 1.009 ce last t summan	s 5 s 0 summary: ry:	.43s .98s art/step	0.98	100.00% 8	7.92%	**
-cons2prim write_dump * Number of ste * Wall time sin particles woke #steps mean 4	n # part/ npa	0.129 1.009 ce last t summan /step 13.00	s 5 s 0 summary: ry: max # pa	.43s .98s art/step 13	0.98	100.00% 8	7.92%	**
└─cons2prim ─write_dump <* Number of ste <* Wall time sin <particles woke<br="">#steps mean 4 bin dt</particles>	r n # part/ npa	0.129 1.009 ce last t summan /step 13.00 art	s 5 s 0 summary: ry: max # pa frac	.43s .98s art/step 1 cpufrad	0.98	100.00% 8	7.92%	 ** *
	n # part/ npa	0.129 1.009 ce last t summan /step 13.00 art 0	s 5 s 0 summary: ry: max # pa frac 0.00%	.43s .98s art/step 17 cpufrac 20.38%	0.98	100.00% 8	7.92%	**

128 cores (2 MPI nodes + OpenMP) TIME = ->

input file jet1m-2n.in written successfully. Lstep -tree balance -density -local -remote -force -local L_remote -cons2prim L_write_dump ** Number of steps sinc 1++ Wall time since last

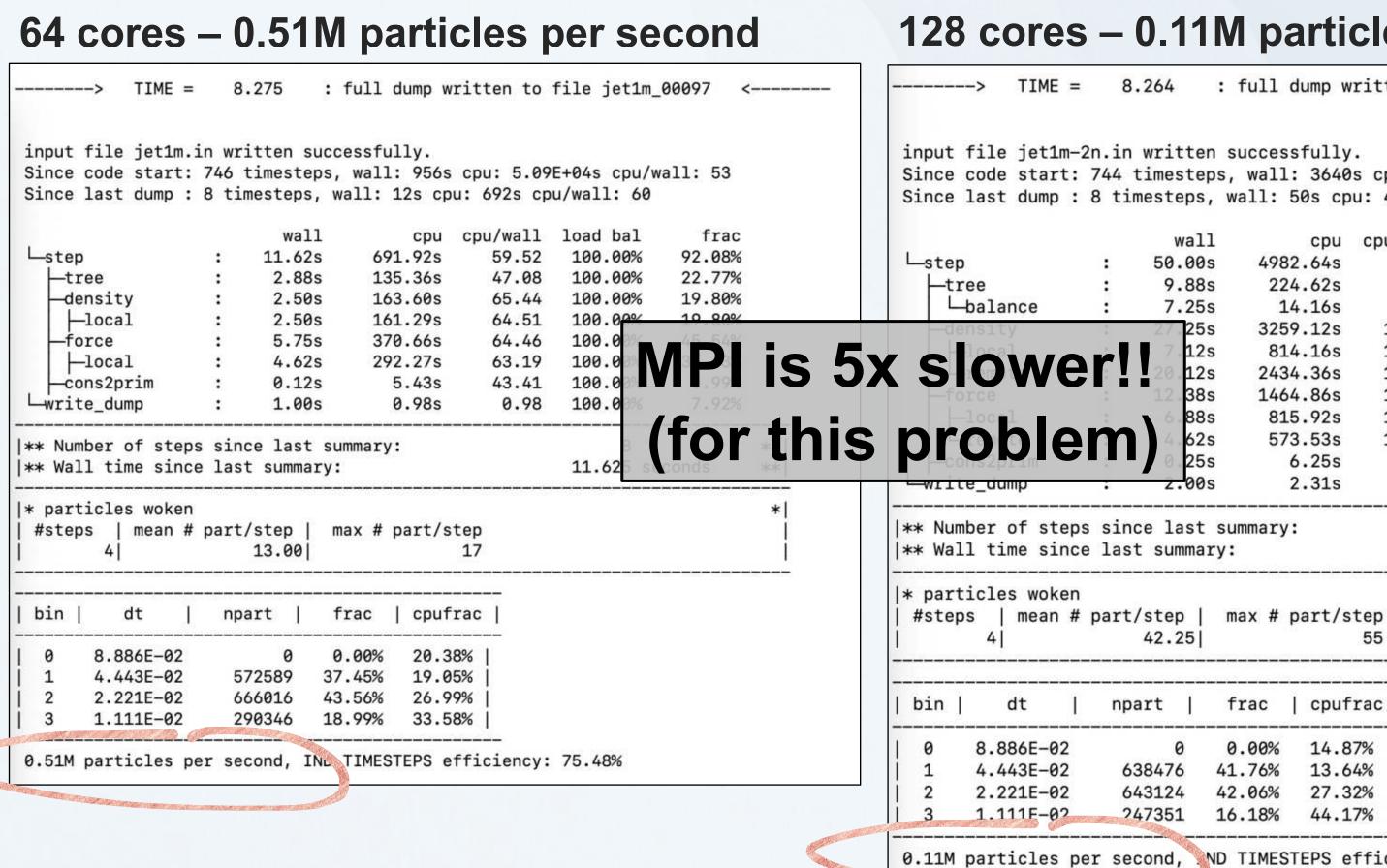
_

: 	* pai #ste		icles wo s mea 4		part/ste 42.		max #	part/step 55
	bin	1	dt	1	npart	1	frac	cpufrac
	0	_	8.886E-	02		0	0.00%	14.87%
ľ	1		4.443E-	02	63847	6	41.76%	13.64%
ľ	2		2.221E-	02	64312	4	42.06%	27.32%
ľ	3		1.111E-	02	24735	1	16.18%	44.17%

: full dump written to file jet1m-2n_00093 8.264

Since code start: 744 timesteps, wall: 3640s cpu: 3.61E+05s cpu/wall: 99 Since last dump : 8 timesteps, wall: 50s cpu: 4983s cpu/wall: 100

ce last su t summary:	mmary:		8 50.000 se	conds	** **
2.00s	2.31s	1.16	43.69%	3.85%	
0.25s	6.25s	25.00	81.82%	0.48%	
4.62s	573.53s	124.01	86.59%	8.89%	
6.88s	815.92s	118.68	89.08%	13.22%	
12.38s	1464.86s	118.37	99.29%	23.80%	
20.12s	2434.36s	120.96	98.39%	38.70%	
7.12s	814.16s	114.27	95.52%	13.70%	
27.25s	3259.12s	119.60	99.94%	52.40%	
7.25s	14.16s	1.95	100.00%	13.94%	
9.88s	224.62s	22.75	88.00%	18.99%	
50.00s	4982.64s	99.65	99.84%	96.15%	
wall	cpu	cpu/wall	load bal	frac	


step	max	#	part/step
42.25			55

0.11M particles per second, IND TIMESTEPS efficiency: 56.51%

64 cores – 53 cpu/wall time		128 cores – 99 cpu/wall time						
> TIME = 8.275 : full dump written to fil		> TIME = 8.264 : full dump written to file jet1m-2n_00093 <						
Since code start: 746 timesteps, wall: 95/s cpu: 5.09E+0 Since last dump : 8 timesteps, wall: 12s cpc: 692s cpu/w		Since code start: 744 timesteps, wall: 3,40s cpu: 3.61E+05s cpu/wall: 99 Since last dump : 8 timesteps, wall: 50s cpu: 4983s cpu/wall: 100						
-step : 11.62s 691.92s 59.52 1 -tree : 2.88s 135.36s 47.08 1 -density : 2.50s 163.60s 65.44 1 -local : 2.50s 161.29s 64.51 1 -force : 5.75s 370.66s 64.46 1 -local : 4.62s 292.27s 63.19 1 -cons2prim : 0.12s 5.43s 43.41 1 -write_dump : 1.00s 0.98s 0.98 1	bad bal frac 100.00% 92.08% 100.00% 22.77% 100.00% 19.80% 100.00% 19.80% 100.00% 45.54% 100.00% 36.63% 100.00% 7.92% 8 ** 11.625 seconds **	wall cpu cpu/wall load bal frac step : 50.00s 4982.64s 99.65 99.84% 96.15% tree : 9.88s 224.62s 22.75 88.00% 18.99% tree : 7.25s 14.16s 1.95 100.00% 13.94% density : 27.25s 3259.12s 119.60 99.94% 52.40% -local : 7.12s 814.16s 114.27 95.52% 13.70% remote : 20.12s 2434.36s 120.96 98.39% 38.70% force : 12.38s 1464.86s 118.37 99.29% 23.80% force : 12.38s 1464.86s 118.37 99.29% 23.80% force : 12.38s 1464.86s 118.37 99.29% 23.80% force : 0.25s 6.25s 25.00 81.82% 0.48% write_dump : 0.00s 2.31s 1.16 43.69% 3.85% *** *** *** *** *** ***						
bin dt npart frac cpufrac 0 8.886E-02 0 0.00% 20.38% 1 4.443E-02 572589 37.45% 19.05%		!* particles woken * ! #steps mean # part/step max # part/step 4 42.25 55						
2 2.221E-02 666016 43.56% 26.99% 3 1.111E-02 290346 18.99% 33.58% 0.51M particles per second, IND TIMESTEPS efficiency: 75	5.48%	bin dt npart frac cpufrac 0 8.886E-02 0 0.00% 14.87% 1 4.443E-02 638476 41.76% 13.64% 2 2.221E-02 643124 42.06% 27.32% 3 1.111E-02 247351 16.18% 44.17% 0.11M particles per second, IND TIMESTEPS efficiency: 56.51%						

64 cores			full dump w	ritten to	file jet1m_	.00097 <		> TIM	:=	8.264 :	full dump v	vritten to	file jet1m-	-2n_00093	<-
<pre>input file jet1m Since code start Since last dump step tree density local force force local force local force step tree tree tree tree tree tree tree tree tree tree density local force step force force step force force step force step force step force step force step</pre>	: 746 : 8 ti : : : : : : : : : : :	timesteps, mesteps, w wall 11.62s 2.88s 2.50s 2.50s 5.75s 4.62s 0.12s 1.00s	wall: 956s all: 12s cpu 691.92s 135.36s 163.60s 161.29s 370.66s 292.27s 5.43s 0.98s	and the second of the second second second		frac 92.08% 22.77% 19.80% 19.80% 45.54% 36.63% 0.99% 7.92%	** **	input file jet: Since code sta: Since last dum -step -tree -balance -density -local -remote -force -local -remote -cons2prim -write_dump	t: 744	timesteps,	wall: 3640)s cpu: 3.6 bu: 4983s c	그는 그는 것이 같은 것이 같은 것이 같은 것이 같아. 것이 같아. 이것을 것이 같아. 것을 것이 같아. 것을 것이 같아. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다		
* particles woke #steps mean 4		/step m 13.00	ax # part/s	tep 17			* 	** Number of s ** Wall time s			0.5		8 50.000 se	econds	** **
bin dt 0 8.886E-02			rac cpuf .00% 20.3	<u> </u>				* particles wo #steps mean 4		t/step m 42.25	ax # part/s	step 55			*
1 4.443E-02 2 2.221E-02 3 1.111E-02	2 E	72589 37 66016 43	.45% 19.0 .56% 26.9 .99% 33.5	5% 9%				bin dt	n	part f	rac cpuf	 Frac			
0.51M particles			TIMESTEPS e	fficiency:	75.48%			0 8.886E- 1 4.443E- 2 2.221E- 3 1.111E-)2)2	638476 41 643124 42	.00% 14.8 .76% 13.6 .06% 27.3 .18% 44.1	54% 32%			

0.11M particles per second, ND TIMESTEPS efficiency: 56.51%

128 cores – 0.11M particles per second

8.264 : full dump written to file jet1m-2n 00093

Since code start: 744 timesteps, wall: 3640s cpu: 3.61E+05s cpu/wall: 99 Since last dump : 8 timesteps, wall: 50s cpu: 4983s cpu/wall: 100

wall	сри	cpu/wall	load bal	frac	
50.00s	4982.64s	99.65	99.84%	96.15%	
9.88s	224.62s	22.75	88.00%	18.99%	
7.25s	14.16s	1.95	100.00%	13.94%	
27. 25s	3259.12s	119.60	99.94%	52.40%	
7.12s	814.16s	114.27	95.52%	13.70%	
20. 12s	2434.36s	120.96	98.39%	38.70%	
12.38s	1464.86s	118.37	99.29%	23.80%	
6.88s	815.92s	118.68	89.08%	13.22%	
4.62s	573.53s	124.01	86.59%	8.89%	
0.25s	6.25s	25.00	81.82%	0.48%	
2.00s	2.31s	1.16	43.69%	3.85%	
ce last su	mmary:		8		**
t summary:	951 (50.000 se	econds	**
					*

42.25		55
npart	frac	
0	0.00%	14.87%
638476	41.76%	13.64%

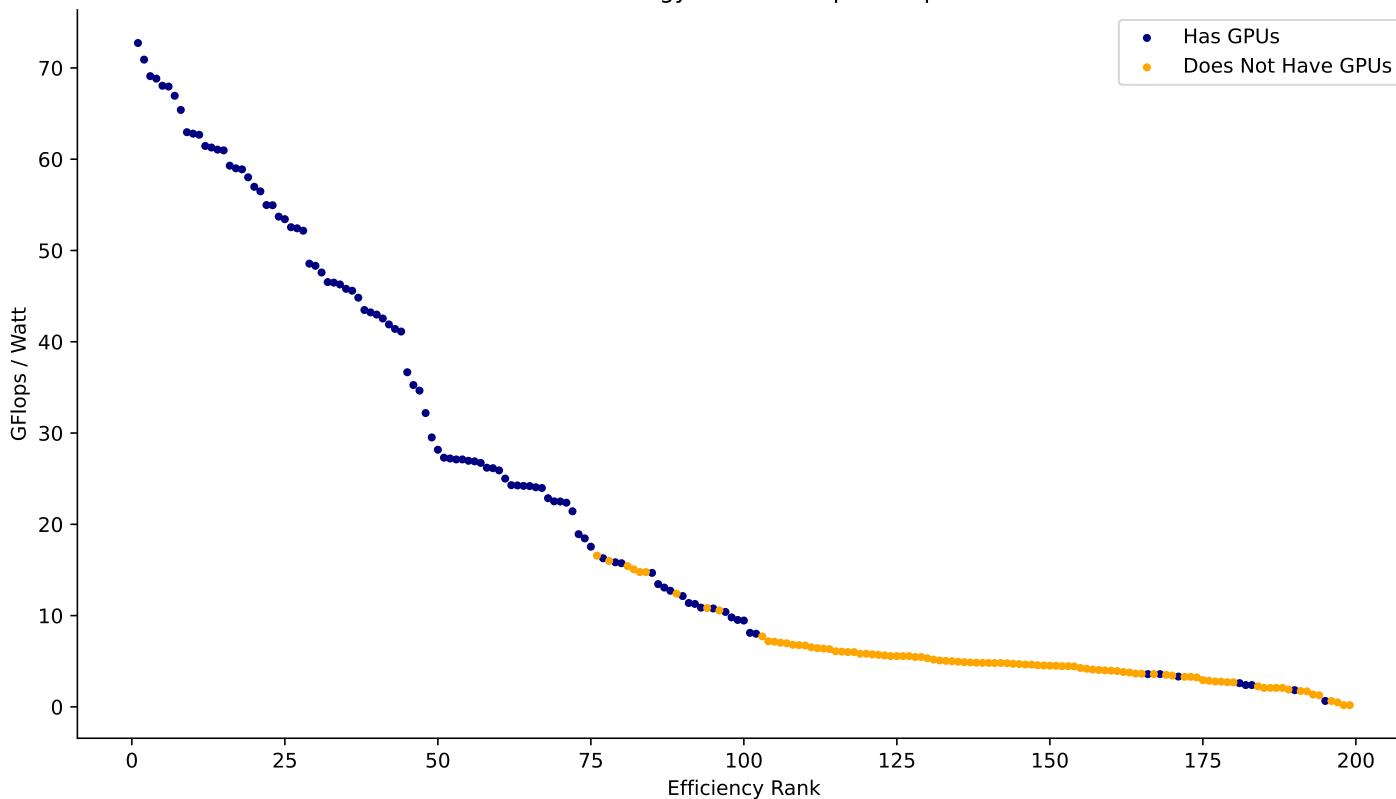
643124 42.06% 27.32% 247351 16.18% 44.17%

ND TIMESTEPS efficiency: 56.51%

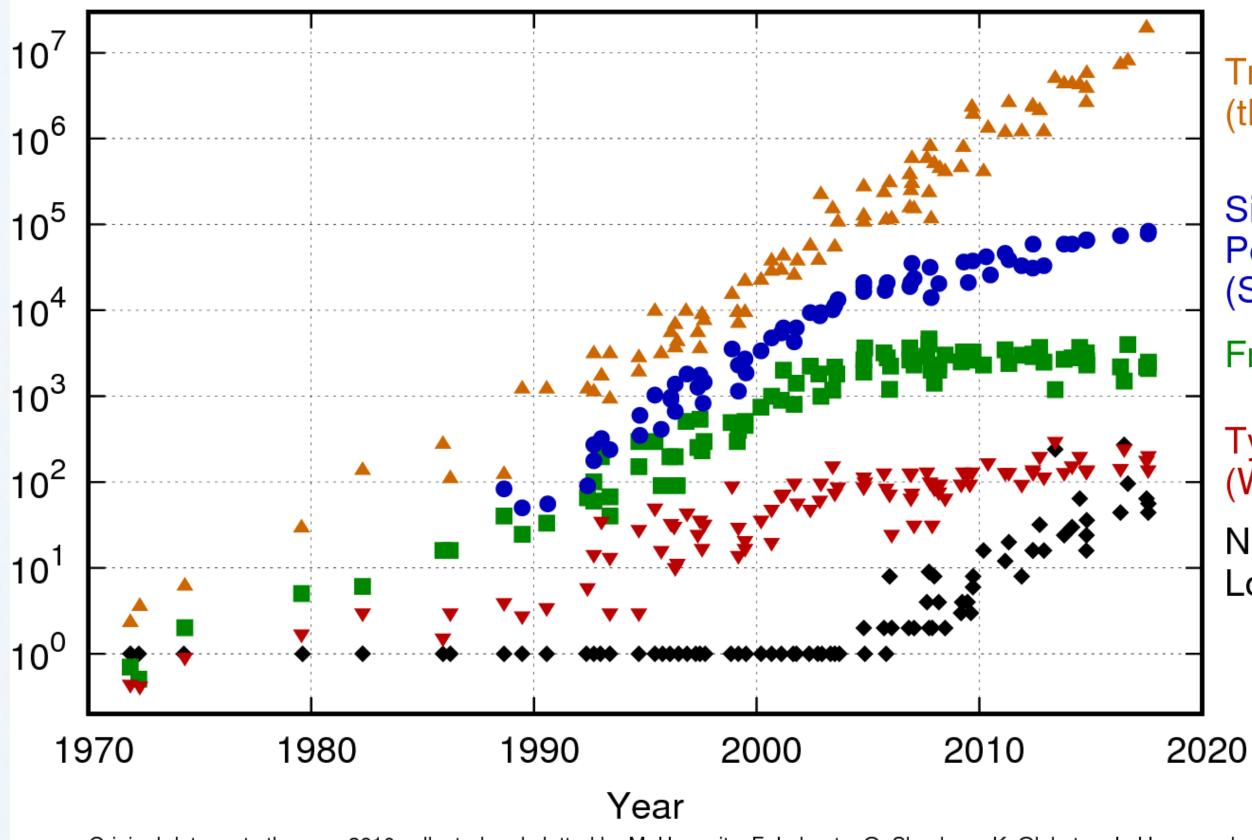
Multi-Physics SPH

- One challenge is including multiple types of physics.
- Shamrock has demonstrated that hydrodynamics can be scaled to **500 billion particles.**
- But how do we do that for gravity, dust (1-fluid, 2-fluid, multigrain, growth, etc), magnetic fields, relativity, radiation (FLD), sink particles, winds, chemistry evolution, etc etc?

Scaling Multi-Physics SPH


I am very interested in parallelizing multi-physics SPH simulations.

Scaling Multi-Physics SPH

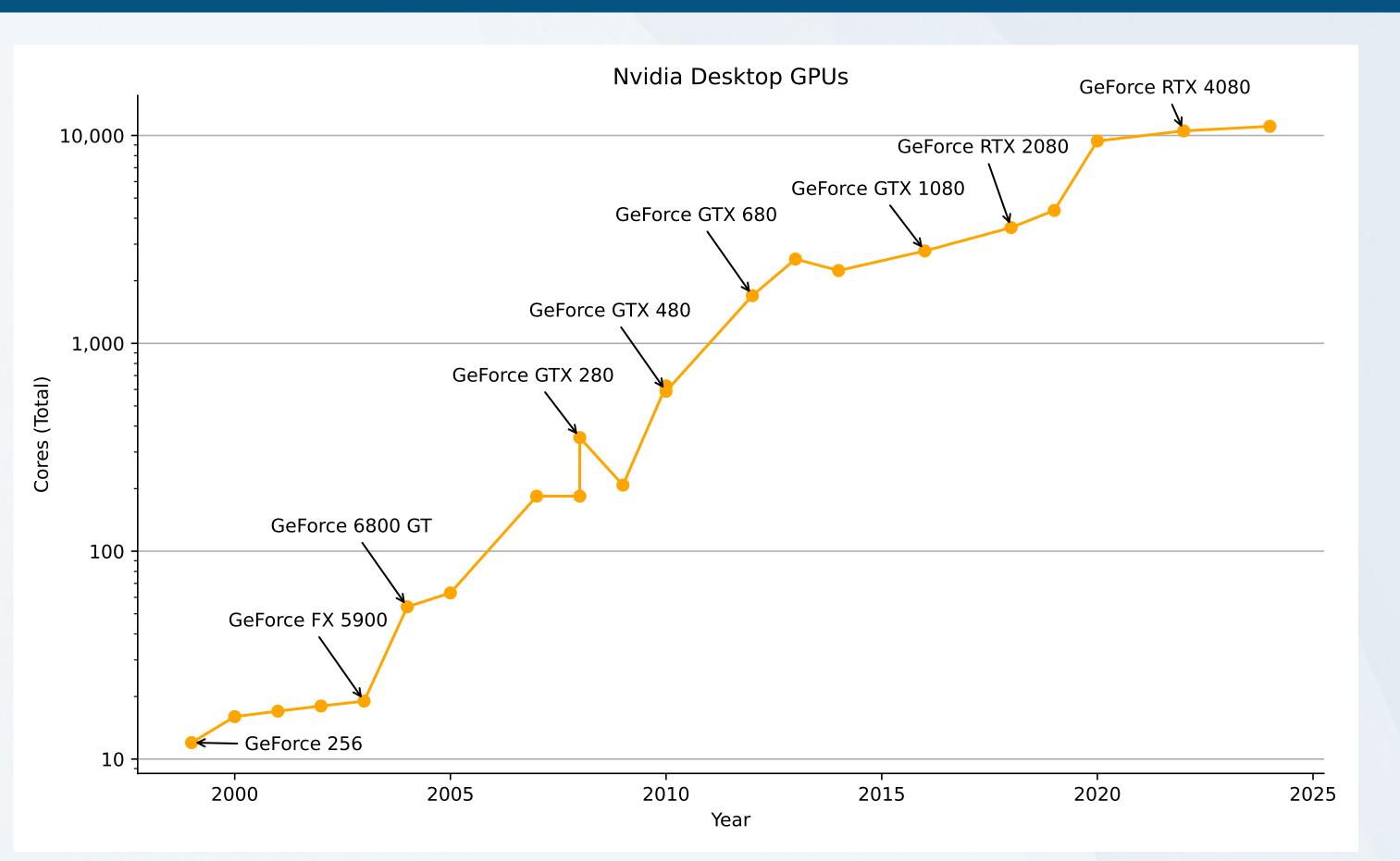

- I am very interested in parallelizing multi-physics SPH simulations.
- Algorithmic optimizations are important!
- But we need to combine existing algorithmic optimizations with the ability to add more compute.
- One very important area will be GPUs. (see talks, e.g., by Timothée, Andrew and Tom)

Supercomputer Energy Performance

42 Years of CPU Trends

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Transistors (thousands)


Single-Thread Performance (SpecINT x 10³)

Frequency (MHz)


Typical Power (Watts)

Number of Logical Cores

30 Years of Nvidia GPUs

Do I have answers?

Do I have answers?

No. But we are looking for solutions.

Phantom Parallelization Roadmap

- Short term goals for improving the parallel performance of Phantom:
 - 1. Use 1-4 GPUs to increase compute.
 - Most HPC nodes have an attached GPU (or 4). •
 - Needs to work with individual particle timesteps (Andrew Harris).
 - Key is for your simulation to not go slower when GPU=yes.
 - MPI scaling to 4-8 nodes. 2.
 - Will be engaging with the HPC consortium in Canada to improve • Phantom's current MPI implementation.

Summary

- We are working on MPI and GPU angles to increase Phantom parallelization.
- Important to retain algorithmic optimizations + all the physics.
- I did not speak about this, but am very interested in MHD everything.
 - MRI in global discs (Jacksen Narvaez).
 - Magnetized white dwarf mergers.